CETIFICATION

SDG No:

JC20184

Humacao, PR

Laboratory:

Accutest, New Jersey

Site:

BMS, Building 5 Area, PR

Matrix:

Groundwater

SUMMARY:

Groundwater samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken May 11-12, 2016 and were analyzed in Accutest Laboratory of Dayton, New Jersey for the ABN TCL Special List (1,4-Dioxane and Naphthalene were analyzed following the SIM technique); TCL pesticides list; and for low molecular weight alcohols (LMWA) the results were reported under SDG No.: JC20184. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
JC20184-1	RA20-GWD	Groundwater	ABN TCL special list; pesticides TCL list; LMWA
JC20184-2	S-40D	Groundwater	ABN TCL special list; pesticides TCL list; LMWA
JC20184-3	S-39D	Groundwater	ABN TCL special list; pesticides TCL list; LMWA
JC20184-3D	S-39D MSD	Groundwater	ABN TCL special list; pesticides TCL list; LMWA
JC20184-3S	S-39D MS	Groundwater	ABN TCL special list; pesticides TCL list; LMWA
JC20184-4	MW-20S	Groundwater	ABN TCL special list; pesticides TCL list; LMWA
JC20184-5	MVV-20D	Groundwater	ABN TCL special list; pesticides TCL list; LMWA
JC20184-6	S40S	Groundwater	ABN TCL special list; pesticides TCL list; LMWA

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

May 25, 2016

Report of Analysis

Page 1 of 3

Client Sample ID: RA20-GWD Lab Sample ID: JC20184-1

Matrix: Method:

AQ - Ground Water

SW846 8270D SW846 3510C

Date Sampled: Date Received:

05/11/16 05/13/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Analytical Batch Prep Batch

File ID DF Analyzed By Prep Date Run #1 3E83229.D 05/14/16 E3E3649 1 AN 05/13/16 OP93902 Run #2 3E83278.D 10 05/16/16 AN 05/13/16 OP93902 E3E3650

Initial Volume Final Volume Run #1 900 ml 1.0 ml Run #2 900 ml 1.0 ml

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.6	0.91	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	0.99	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.6	2.7	ug/l	
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.6	1.4	ug/I	
95-48-7	2-Methylphenol	ND	2.2	0.99	ug/i	
	3&4-Methylphenol	ND	2.2	0.98	ug/l	
88-75-5	2-Nitrophenol	ND -	5.6	1.1	ug/l	
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l	
87-86-5	Pentachlorophenol	ND ·	5.6	1.5	ug/l	
108-95-2	Phenol	ND	2.2	0.44	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.6	1.6	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.6	1.5	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.6	1.0	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l	
98-86-2	Acetophenone	ND	2.2	0.23	ug/l	
120-12-7	Anthracene	ND	1.1	0.23	ug/l	
1912-24-9	Atrazine	ND	2.2	0.50	ug/l	
100-52-7	Benzaldehyde	ND	5.6	0.32	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.23	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.1	0.24	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.23	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.38	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.45	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.2	0.51	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.24	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l	
106-47-8	4-Chloroaniline	ND	5.6	0.38	ug/l	
86-74-8	Carbazole	ND	1.1	0.25	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: RA20-GWD Lab Sample ID: JC20184-1

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 05/11/16 Date Received: 05/13/16

Percent Solids: n/a

Q

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.2	0.72	ug/l
218-01-9	Chrysene	ND	1.1	0.20	ug/l
111-91-1	bis (2-Chloroethoxy) methane	ND	2.2	0.31	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.28	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.45	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.41	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.61	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.53	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.56	ug/l
123-91-1	1,4-Dioxane	349 a	11	7.3	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.37	ug/l
132-64-9	Dibenzofuran	ND	5.6	0.24	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.2	0.55	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.2	0.26	ug/l
84-66-2	Diethyl phthalate	ND	2.2	0.29	ug/l
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l
206-44-0	Fluoranthene	ND	1.1	0.19	ug/l
86-73-7	Fluorene	ND	1.1	0.19	ug/l
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l
87-68-3	Hexachlorobutadiene	ND	1.1	0.55	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	11	3.1	ug/l
67-72-1	Hexachloroethane	ND	2.2	0.43	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.37	ug/l
78-59-1	Isophorone	ND	2.2	0.31	ug/l
90-12-0	1-Methylnaphthalene	ND	1:1	0.29	ug/l
91-57-6	2-Methylnaphthalene	ND	1.1	0.23	ug/l
88-74-4	2-Nitroaniline	ND	5.6	0.31	ug/l
99-09-2	3-Nitroaniline	ND	5.6	0.43	ug/l
100-01-6	4-Nitroaniline	ND	5.6	0.49	ug/l
98-95-3	Nitrobenzene	ND	2.2	0.71	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.53	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.6	0.25	ug/l
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l
129-00-0	Pyrene	ND	1.1	0.24	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.41	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
367-12-4	2-Fluorophenol	40%	53%	14-8	38%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Matrix:

Method:

Project:

Report of Analysis

Client Sample ID: RA20-GWD

Lab Sample ID:

JC20184-1

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: Date Received:

05/11/16 05/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	27% 80% 65% 72% 72%	51% 82% 80% 88% 95%	10-110% 39-149% 32-128% 35-119% 10-126%

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E - Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

Report of Analysis

Page 1 of 1

Client Sample ID: RA20-GWD JC20184-1 Lab Sample ID:

File ID

3M61322.D

Matrix: Method: AQ - Ground Water

DF

1

SW846 8270D BY SIM SW846 3510C

Date Sampled: Date Received:

Q

05/11/16 05/13/16

Percent Solids:

Project:

BMSMC, Building 5 Area, PR

By

IJ

Prep Date

05/13/16

Prep Batch OP93902A

Analytical Batch E3M2883

Run #1 Run #2

Initial Volume Final Volume 1.0 ml Run #1

Run #2

91-20-3

900 ml

Compound CAS No.

Result RL MDL Units

0.033 0.11

Run#2

ug/l

Surrogate Recoveries CAS No.

Naphthalene

69% 62%

ND

Run#1

Analyzed

05/14/16

24-125% 19-127% 10-119%

Limits

Nitrobenzene-d5 4165-60-0 2-Fluorobiphenyl 321-60-8 1718-51-0 Terphenyl-d14

76%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

12 of 621

Report of Analysis

Ву

XPL

n/a

Page 1 of 1

Client Sample ID: RA20-GWD Lab Sample ID:

JC20184-1

Date Sampled:

05/11/16 05/13/16

Matrix:

AQ - Ground Water SW846-8015C (DAI) Date Received: Percent Solids: n/a

Method: Project:

BMSMC, Building 5 Area, PR

File ID GH104996.D Run #1

Analyzed DF 05/17/16

Prep Batch Prep Date n/a

Analytical Batch GGH5286

Run #2

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5 78-83-1 67-63-0 71-23-8 71-36-3 78-92-2 67-56-1	Ethanol Isobutyl Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol Methanol	ND ND ND ND ND ND	100 100 100 100 100 100 200	55 36 68 43 87 66 71	ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run#	2 Lin	nits	
111-27-3	Hexanol	97%		56-	145%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B \,=\, Indicates \,\, analyte \,\, found \,\, in \,\, associated \,\, method \,\, blank$ N = Indicates presumptive evidence of a compound

Client Sample ID: RA20-GWD Lab Sample ID:

JC20184-1

Matrix:

AQ - Ground Water

Method: Project:

SW846 8081B SW846 3510C

BMSMC, Building 5 Area, PR

05/11/16 Date Sampled: Date Received:

05/13/16

Percent Solids: n/a

Analytical Batch Prep Batch Prep Date Analyzed By DF File ID G1G3989 OP93907 05/13/16 05/16/16 RK 1G123081.D Run #1

Run #2

Initial Volume

Final Volume

Run #1 Run #2

10.0 ml 860 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.012	0.0070	ug/l	
319-84-6	alpha-BHC	ND	0.012	0.0070	ug/l	
319-85-7	beta-BHC	ND	0.012	0.0066	ug/l	
319-86-8	delta-BHC	ND	0.012	0.0053	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.012	0.0032	ug/l	
5103-71-9	alpha-Chlordane	ND	0.012	0.0054	ug/l	
5103-74-2	gamma-Chlordane	ND	0.012	0.0053	ug/l	
60-57-1	Dieldrin	ND	0.012	0.0042	ug/l	
72-54-8	4,4'-DDD	ND	0.012	0.0044	ug/l	
72-55-9	4,4'-DDE	ND	0.012	0.0072	ug/l	
50-29-3	4,4'-DDT	ND	0.012	0.0058	ug/l	
72-20-8	Endrin	ND	0.012	0.0059	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.012	0.0061	ug/l	
7421-93-4	Endrin aldehyde	ND	0.012	0.0060	ug/l	
53494-70-5	Endrin ketone	ND	0.012	0.0059	ug/l	
959-98-8	Endosulfan-l	ND	0.012	0.0058	ug/l	
33213-65-9		ND	0.012	0.0050	ug/l	
76-44-8	Heptachlor	ND	0.012	0.0044	ug/l	
1024-57-3	Heptachlor epoxide	ND	0:012	0.0076	ug/l	
72-43-5	Methoxychlor	ND	0.023	0.0066	ug/l	
	Toxaphene	ND	0.29	0.21	ug/l	
8001-35-2	1 oxapnene					
CAS No.	Surrogate Recoveries	Run# 1	Run#	2 Lin	its	
877-09-8	Tetrachloro-m-xylene	91%		26-	132%	
877-09-8	Tetrachloro-m-xylene	101%			132%	
2051-24-3	Decachlorobiphenyl	48%			118%	
2051-24-3	Decachlorobiphenyl	53%		10-	118%	
ZU31-24-3	Decuring on hurs.					

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: S-40D

Lab Sample ID:

JC20184-2

Matrix:

Project:

AQ - Ground Water

Method:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 05/11/16 Date Received: 05/13/16

Percent Solids:

File ID Run #1 3E83230.D

DF 1

Analyzed By AN 05/14/16

Prep Date 05/13/16

Prep Batch OP93902

Analytical Batch E3E3649

Run #2

Initial Volume

Final Volume

920 ml Run #1

1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.4	0.89	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.4	0.97	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.4	2.7	ug/l	
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l	
534-52-1	4.6-Dinitro-o-cresol	ND	5.4	1.4	ug/l	
95-48-7	2-Methylphenol	ND	2.2	0.97	ug/l	
	3&4-Methylphenol	ND	2.2	0.96	ug/l	
88-75-5	2-Nitrophenol	ND	5.4	1.0	ug/l	
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l	
87-86-5	Pentachlorophenol	ND	5.4	1.5	ug/l	
108-95-2	Phenol	ND	2.2	0.43	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.4	1.6	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.4	1:4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.4	1.0	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l	
98-86-2	Acetophenone	ND	2.2	0.23	ug/l	
120-12-7	Anthracene	ND	1.1	0.23	ug/l	
1912-24-9	Atrazine	ND	2.2	0.49	ug/l	
100-52-7	Benzaldehyde	ND	5,4	0.31	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.22	ug/l	2
50-32-8	Benzo(a)pyrene	ND	1.1	0.23	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.22	ug/l	[3]
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.37	ug/l	S
207-08-9	Benzo(k) fluoranthene	ND	1.1	0.22	ug/l	Ino Establine
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.44	ug/l	0
85-68-7	Butyl benzyl phthalate	ND	2.2	0.50	ug/l	19
92-52-4	1,1'-Biphenyl	ND	1.1	0.23	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l	
106-47-8	4-Chloroaniline	ND	5.4	0.37	ug/l	
86-74-8	Carbazole	ND	1.1	0.25	ug/l	

Parisel Infants Méndez LIC # 188

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E - Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Project:

S-40D Client Sample ID: JC20184-2 Lab Sample ID:

AQ - Ground Water

Matrix Method:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 05/11/16 05/13/16 Date Received:

Percent Solids: n/a

ABN TCL Special List

ADM ICE S	poetal Disc					
CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.2	0.71	ug/l	
218-01-9	Chrysene	ND	1.1	0.19	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.30	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.27	ug/l	
108-60-1	his(2-Chloroisopropyl)ether	ND	2.2	0.44	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.40	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.60	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.52	ug/l	
91-94-1	3.3'-Dichlorobenzidine	ND	2.2	0.55	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.36	ug/l	
132-64-9	Dibenzofuran	ND	5.4	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.54	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.25	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.28	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.18	ug/l	
86-73-7	Fluorene	ND	1.1	0.19	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.35	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.53	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.0	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.42	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1::1	0.36	ug/l	
78-59-1	Isophorone	ND	2.2	0.30	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1,1	0.23	ug/l	
88-74-4	2-Nitroaniline	ND	5.4	0.30	ug/l	
99-09-2	3-Nitroaniline	ND	5.4	0.42	ug/l	
100-01-6	4-Nitroaniline	ND	5.4	0.48	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.70	ug/l	SE POCHOO OF THE
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.52	ug/l	and the same
86-30-6	N-Nitrosodiphenylamine	ND	5.4	0.24	ug/l	3
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	Partiel Infinite Méndez
129-00-0	Pyrene	ND	1.1	0.24	ug/l	Méndez
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.40	ug/l	3,100
CAS No.	Surrogate Recoveries	Run#1	Run	/2 Li	mits	CHIMICO LICENCIAS
367-12-4	2-Fluorophenol	38%		14	-88%	
4165-62-2		25%		10	-110%	
	_ ,					

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: Lab Sample ID:

S-40D JC20184-2

Matrix:

AQ - Ground Water

Method: Project: SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 05/11/16 Date Received: 05/13/16

Percent Solids: n/a

16

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	75%		39-149%
4165-60-0	Nitrobenzene-d5	68%		32-128%
321-60-8	2-Fluorobiphenyl	73%		35-119%
1718-51-0	Terphenyl-d14	77%		10-126%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

IJ

Page 1 of 1

Client Sample ID: S-40D Lab Sample ID:

File ID

3M61323.D

JC20184-2

Date Sampled: Date Received:

05/11/16 05/13/16

Matrix: Method: AQ - Ground Water SW846 8270D BY SIM SW846 3510C

Percent Solids:

Project:

BMSMC, Building 5 Area, PR

DF

1

Prep Batch

OP93902A

Q

Analytical Batch E3M2883

Run #1 Run #2

Initial Volume **Final Volume** 920 ml Run #1

Run #2

1.0 ml

Result CAS No. Compound

91-20-3 Naphthalene 123-91-1 1,4-Dioxane

0.032 ND 0.11ug/l 5.32 0.11 0.053 ug/l

Run#2

RL

Surrogate Recoveries CAS No.

66% 67%

Run#1

Analyzed

05/14/16

24-125%

Limits

Units

Prep Date

05/13/16

MDL

4165-60-0 Nitrobenzene-d5 19-127% 2-Fluorobiphenyl 321-60-8 10-119% 1718-51-0 Terphenyl-d14 81%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-40D

Lab Sample ID:

JC20184-2

Matrix:

AQ - Ground Water

Method: Project:

SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled:

05/11/16 Date Received: 05/13/16

Percent Solids: n/a

-					D-4-	Prep Batch	Analytical Batch
-	File ID	DF	Analyzed	Ву	Prep Date	,	GGH5286
Run #1	GH104997.D	1	05/17/16	XPL	n/a	n/a	66113200
Run #2							

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5 78-83-1 67-63-0 71-23-8 71-36-3 78-92-2	Ethanol Isobutyl Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol Methanol	ND ND ND ND ND ND	100 100 100 100 100 100 200	55 36 68 43 87 66	ug/l ug/l ug/l ug/l ug/l ug/l	
67-56-1 CAS No. 111-27-3	Surrogate Recoveries Hexanol	Run# 1	Run# 2	. Lin	_	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-40D

Lab Sample ID: Matrix:

JC20184-2

AQ - Ground Water SW846 8081B SW846 3510C

Date Sampled: 05/11/16 Date Received: 05/13/16

Percent Solids:

Method: BMSMC, Building 5 Area, PR Project:

Analytical Batch Prep Batch Prep Date DF Analyzed By File ID G1G3989 OP93907 05/13/16 RK 05/16/16 1G123082.D 1 Run #1

Run #2

Initial Volume Final Volume

850 ml Run #1

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.012	0.0071	ug/i	
319-84-6	alpha-BHC	ND	0.012	0.0071	ug/l	
319-85-7	beta-BHC	ND	0.012	0.0067	ug/l	
319-86-8	delta-BHC	ND	0.012	0.0054	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.012	0.0033	ug/l	
5103-71-9	alpha-Chlordane	ND	0.012	0.0054	ug/l	
5103-74-2	gamma-Chlordane	ND	0.012	0.0054	ug/l	
60-57-1	Dieldrin	ND	0.012	0.0042	ug/l	
72-54-8	4,4'-DDD	ND	0.012	0.0045	ug/l	
72-55-9	4,4'-DDE	ND	0.012	0.0072	ug/l	
50-29-3	4,4'-DDT	ND	0.012	0.0058	ug/l	
72-20-8	Endrin	ND	0.012	0.0059	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.012	0.0062	ug/l	
7421-93-4	Endrin aldehyde	ND	0.012	0.0060	ug/l	
53494-70-5	Endrin ketone	ND	0.012	0.0060	ug/l	
959-98-8	Endosulfan-I	ND	0.012	0.0058	ug/l	
33213-65-9	Endosulfan-II	ND	0.012	0.0050	ug/l	
76-44-8	Heptachlor	ND	0.012	0.0045	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.012	0.0077	ug/l	
72-43-5	Methoxychlor	ND	0.024	0.0067	ug/l	
8001-35-2	Toxaphene	ND	0.29	0.22	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	. Lim	its	
877-09-8	Tetrachloro-m-xylene	127%			32%	
877-09-8	Tetrachloro-m-xylene	119%			32%	
2051-24-3	Decachlorobiphenyl	88%			118%	
2051-24-3	Decachlorobiphenyl	91%		10-1	118%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E - Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: S-39D

JC20184-3

Lab Sample ID:

AQ - Ground Water

DF

1

Matrix: Method:

SW846 8270D SW846 3510C

Date Sampled: 05/12/16 Date Received: 05/13/16

Percent Solids:

Project:

BMSMC, Building 5 Area, PR

Run #1

File ID 3E83231.D Analyzed 05/14/16

Prep Date By 05/13/16 AN

Prep Batch OP93902

Q

Analytical Batch E3E3649

Run #2

890 ml

Initial Volume Final Volume

Run #1

1.0 ml

Run #2

ABN TCL Special List

CAS No.	o. Compound		RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.6	0.92	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	1.0	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.6	2.7	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.6	1.5	ug/l
95-48-7	2-Methylphenol	ND	2.2	1.0	ug/l
	3&4-Methylphenol	ND	2.2	0.99	ug/l
88-75-5	2-Nitrophenol	ND	5.6	1/1	ug/l
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l
87-86-5	Pentachlorophenol	ND	5.6	1.6	ug/l
108-95-2	Phenol	ND	2.2	0.44	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.6	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.6	1.5	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.6	1.0	ug/l
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l
98-86-2	Acetophenone	ND	2.2	0.23	ug/l
120-12-7	Anthracene	ND	1:1	0.24	ug/l
1912-24-9	Atrazine	ND	2.2	0.50	ug/l
100-52-7	Benzaldehyde	ND	5.6	0.32	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.23	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.24	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.23	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.38	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.45	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.51	ug/l
92-52-4	1,1'-Biphenyl	ND	1.1	0.24	ug/l
91-58-7	2-Chloronaphthalene	ND	2.2	0.27	ug/l
106-47-8	4-Chloroaniline	ND	5.6	0.38	ug/l
86-74-8	Carbazole	ND	1.1	0.26	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

] = Indicates an estimated value

B = Indicates analyte found in associated method blank

Method:

Project:

Report of Analysis

Client Sample ID: S-39D Lab Sample ID: JC20184-3 Matrix:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 05/12/16 Date Received: 05/13/16

Percent Solids: n/a

Q

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	2.2	0.73	ug/l	
218-01-9	Chrysene	ND	1.1	0.20	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.31	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.28	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.45	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.41	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.62	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.53	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.57	ug/i
123-91-1	1,4-Dioxane	27.2	1.1	0.74	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.37	ug/l
132-64-9	Dibenzofuran	ND	5.6	0.25	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.2	0.56	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.2	0.26	ug/l
84-66-2	Diethyl phthalate	ND	2.2	0.29	ug/l
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.9	ug/l
206-44-0	Fluoranthene	ND	1.1	0.19	ug/l
86-73-7	Fluorene	ND	1.1	0.19	ug/l
118-74-1	Hexachlorobenzene	ND	1.1	0.37	ug/l
87-68-3	Hexachlorobutadiene	ND	1.1	0.55	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	11	3.1	ug/l
67-72-1	Hexachloroethane	ND	2.2	0.44	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.37	ug/l
78-59-1	Isophorone	ND	2.2	0.31	ug/l
90-12-0	1-Methylnaphthalene	ND	1.1	0.30	ug/l
91-57-6	2-Methylnaphthalene	ND	1.1	0.24	ug/l
88-74-4	2-Nitroaniline	ND	5.6	0.31	ug/l
99-09-2	3-Nitroaniline	ND	5.6	0.43	ug/l
100-01-6	4-Nitroaniline	ND	5.6	0.49	ug/l
98-95-3	Nitrobenzene	ND	2.2	0.72	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.54	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.6	0.25	ug/l
85-01-8	Phenanthrene	ND	1.1	0.20	ug/l
129-00-0	Pyrene	ND	1.1	0.25	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.42	ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its
367-12-4	2-Fluorophenol	33%		14-8	8%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-39D Lab Sample ID:

JC20184-3

AQ - Ground Water

Date Received: Percent Solids: n/a

Date Sampled: 05/12/16 05/13/16

Method: Project:

Matrix:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	22%		10-110%
118-79-6	2,4,6-Tribromophenol	70%		39-149%
4165-60-0	Nitrobenzene-d5	55%		32-128%
321-60-8	2-Fluorobiphenyl	63%		35-119%
1718-51-0	Terphenyl-d14	61%		10-126%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

] = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: S-39D

File ID

3M61324.D

Initial Volume

Lab Sample ID:

JC20184-3

Matrix: Method: AO - Ground Water

DF

1

SW846 8270D BY SIM SW846 3510C

Date Sampled: 05/12/16 Date Received: 05/13/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Prep Date

05/13/16

Prep Batch **Analytical Batch** OP93902A E3M2883

Run #1 Run #2

Final Volume

890 ml

1.0 ml

Run #1 Run #2

CAS No. Compound Result

Analyzed

05/14/16

RL

By

IJ

MDL

Units

Q

91-20-3

4165-60-0

321-60-8

1718-51-0

Naphthalene

ND Run#1 0.11 Run# 2 0.033 ug/l

Limits

CAS No. Surrogate Recoveries

Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14

54% 66% 74% 24-125% 19-127%

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Report of Analysis

By

XPL

Page 1 of 1

Client Sample ID: S-39D

Lab Sample ID:

JC20184-3

AQ - Ground Water

Date Sampled: Date Received: 05/13/16

05/12/16

Matrix: Method:

SW846-8015C (DAT)

DF

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Analyzed

05/17/16

Prep Batch n/a

Q

Prep Date

n/a

Analytical Batch GGH5286

Run #1 Run #2

Low Molecular Alcohol List

File ID

GH104990.D

CAS No.	Compound	Result	RL	MDL	Units
64-17-5	Ethanol	ND	100	55	ug/l
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3	Hexanol	77%		56-1	45%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

RK

Page 1 of 1

Client Sample ID: S-39D

File ID

1G123111.D

Lab Sample ID:

JC20184-3

Matrix:

AQ - Ground Water

Prep Date

05/13/16

Date Sampled: 05/12/16 Date Received: 05/13/16

SW846 8081B SW846 3510C

DF

1

Percent Solids: n/a

Q

Method: Project:

BMSMC, Building 5 Area, PR

Analyzed By

05/16/16

Prep Batch OP93907

Analytical Batch G1G3989

Run #1 Run #2

> Initial Volume Final Volume

Run #1

850 ml

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.012	0.0071	ug/l
319-84-6	alpha-BHC	ND	0.012	0.0071	ug/l
319-85-7	beta-BHC	ND	0.012	0.0067	ug/l
319-86-8	delta-BHC	ND	0.012	0.0054	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.012	0.0033	ug/l
5103-71-9	alpha-Chlordane	ND	0.012	0.0054	ug/l
5103-74-2	gamma-Chlordane	ND	0.012	0.0054	ug/l
60-57-1	Dieldrin	ND	0.012	0.0042	ug/l
72-54-8	4,4'-DDD	ND	0.012	0.0045	ug/l
72-55-9	4,4*-DDE	ND	0.012	0.0072	ug/l
50-29-3	4,4*-DDT	ND	0.012	0.0058	ug/l
72-20-8	Endrin	ND	0.012	0.0059	ug/l
1031-07-8	Endosulfan sulfate	ND	0.012	0.0062	ug/l
7421-93-4	Endrin aldehyde	ND	0.012	0.0060	ug/l
53494-70-5	Endrin ketone	ND	0.012	0.0060	ug/l
959-98-8	Endosulfan-I	ND	0.012	0.0058	ug/l
33213-65-9	Endosulfan-II	ND	0.012	0.0050	ug/l
76-44-8	Heptachlor	ND	0.012	0.0045	ug/l
1024-57-3	Heptachlor epoxide	ND	0.012	0.0077	ug/l
72-43-5	Methoxychlor	ND	0.024	0.0067	ug/l
8001-35-2	Toxaphene	ND	0.29	0.22	ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts
877-09-8	Tetrachioro-m-xylene	109%		26-13	32%
877-09-8	Tetrachloro-m-xylene	97%		26-13	32%
2051-24-3	Decachlorobiphenyl	81%		10-11	18%
2051-24-3	Decachlorobiphenyl	76%		10-11	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

SGS Accutest

Report of Analysis

Client Sample ID: MW-20S

JC20184-4

Lab Sample ID:

AQ - Ground Water

Matrix: Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 05/12/16 Date Received: 05/13/16

Percent Solids: n/a

Q

Analytical Batch Prep Batch Prep Date File ID DF Analyzed By OP93902 E3E3649 05/13/16 05/14/16 AN 3E83232.D 1 Run #1

Run #2

Final Volume Initial Volume

950 ml Run #1

1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.3	0.86	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.3	0.94	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.1	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.3	2.6	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.3	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.1	0.93	ug/l
	3&4-Methylphenol	ND	2.1	0.93	ug/l
88-75-5	2-Nitrophenol	ND	5.3	1.0	ug/l
100-02-7	4-Nitrophenol	ND	11	1.2	ug/l
87-86-5	Pentachlorophenol	ND	5.3	1.5	ug/l
108-95-2	Phenol	ND	2.1	0.41	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.3	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.3	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.3	0.97	ug/l
83-32-9	Acenaphthene	ND	1.1	0.20	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.14	ug/l
98-86-2	Acetophenone	ND	2.1	0.22	ug/l
120-12-7	Anthracene	ND	1,1	0.22	ug/l
1912-24-9	Atrazine	ND	2.1	0.47	ug/l
100-52-7	Benzaldehyde	ND	5.3	0.30	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.21	ug/l
50-32-8	Вепго(а)ругепе	ND	1.1	0.22	ug/l
205-99-2	Benzo(b) fluoranthene	ND	1.1	0.22	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.36	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.22	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.43	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.1	0.48	ug/l
92-52-4	1,1'-Biphenyl	ND	1.1	0.22	ug/l
91-58-7	2-Chloronaphthalene	ND	2.1	0.25	ug/l
106-47-8	4-Chloroaniline	ND	5.3	0.36	ug/l
86-74-8	Carbazole	ND	1.1	0.24	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-20S Lab Sample ID:

JC20184-4

AQ - Ground Water

Date Sampled: Date Received:

05/12/16 05/13/16

Matrix: Method: Project:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.1	0.68 ug/l		
218-01-9	Chrysene	ND	1.1	0.19	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.29	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.26	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.42	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.39	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.58	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.50	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.53	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.35	ug/l	
132-64-9	Dibenzofuran	ND	5.3	0.23	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.1	0.52	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.1	0.25	ug/l	
84-66-2	Diethyl phthalate	ND	2.1	0.28	ug/l	
131-11-3	Dimethyl phthalate	ND	2.1	0.23	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate			1.7	ug/l	
206-44-0	Fluoranthene	ND	9		ug/l	
86-73-7	Fluorene	ND			ug/l	
118-74-1	Hexachlorobenzene	ND	1.1			
87-68-3	Hexachlorobutadiene	ND	1.1	0.52	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	2.9	ug/l	
67-72-1	Hexachloroethane	ND	2.1	0.41	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.35	ug/l	
78-59-1	Isophorone	ND	2.1	0.29	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1:1	0.22	ug/l	
88-74-4	2-Nitroaniline	ND	5.3	0.29	ug/I	
99-09-2	3-Nitroaniline	ND	5.3	0.41	ug/l	
100-01-6	4-Nitroaniline	ND	5.3	0.46	ug/l	
98-95-3	Nitrobenzene	ND	2.1	0.68	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND =	2,1	0.51	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.23	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.18	ug/l	
129-00-0	Pyrene	ND	1.1	0.23	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.39	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	42%		14-8	38%	
4165-62-2	Phenol-d5	25%		10-1	110%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-20S Lab Sample ID:

JC20184-4

Matrix:

AQ - Ground Water

Method: SW846 8270D SW846 3510C Project: BMSMC, Building 5 Area, PR

Date Sampled: Date Received:

05/12/16 05/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	82%		39-149%
4165-60-0	Nitrobenzene-d5	70%		32-128%
321-60-8	2-Fluorobiphenyl	76%		35-119%
1718-51-0	Terphenyl-d14	85%		10-126%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

IJ

Prep Date

05/13/16

Page 1 of 1

Client Sample ID: Lab Sample ID:

MW-20S

JC20184-4

Date Sampled: Date Received: 05/12/16 05/13/16

Matrix: Method: AQ - Ground Water SW846 8270D BY SIM SW846 3510C

Analyzed

05/14/16

Q

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Analytical Batch Prep Batch OP93902A E3M2883

Run #1 Run #2

Initial Volume Run #1 950 ml

File ID

3M61325.D

Final Volume

Run #2

1.0 ml

DF

1

CAS No.	Compound	Result	RL	MDL	Units
91-20-3	Naphthalene	ND	0.11	0.031	ug/l
123-91-1	1,4-Dioxane	3.21	0.11	0.051	ug/l

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	64%		24-125%
321-60-8	2-Fluorobiphenyl	72%		19-127%
1718-51-0	Terphenyl-d14	87%		10-119%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

XPL

Page 1 of 1

Client Sample ID: MW-20S Lab Sample ID:

JC20184-4

Prep Date

n/a

Date Sampled: 05/12/16

Matrix:

AQ - Ground Water

Q

Date Received: 05/13/16

Method:

SW846-8015C (DAI)

DF

1

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Analyzed

05/17/16

Prep Batch n/a

Analytical Batch GGH5286

Run #1 Run #2

Low Molecular Alcohol List

File ID

GH104993.D

CAS No.	Compound	Result	RL	MDL	Units
64-17-5	Ethanol	ND	100	55	ug/l
78-83-1 67-63-0	Isobutyl Alcohol Isopropyl Alcohol	ND ND	100 100	36 68	ug/l ug/l
71-23-8 71-36-3	n-Propyl Alcohol n-Butyl Alcohol	ND ND	100 100	43 87	ug/l ug/l
78-92-2 67-56-1	sec-Butyl Alcohol	ND ND	100	66 71	ug/l
4. 55 5					ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its
111-27-3	Hexanol	101%		56-1	45%

ND = Not detected

MDL = Method Detection Limit

RL - Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW-20S

Lab Sample ID: Matrix:

JC20184-4

AQ - Ground Water

Method: Project:

SW846 8081B SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 05/12/16

Q

Date Received: 05/13/16

Percent Solids: n/a

-	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	1G123084.D	1	05/16/16	RK	05/13/16	OP93907	G1G3989
In #2							

Run #2

Run #1 990 ml

Initial Volume Final Volume $10.0 \, ml$

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0061	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l
319-85-7	beta-BHC	ND	0.010	0.0057	ug/l
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/l
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0062	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0050	ug/l
72-20-8	Endrin	ND	0.010	0.0051	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0050	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0043	ug/l
76-44-8	Heptachlor	ND	0.010	0.0038	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0066	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/l
8001-35-2	Toxaphene	ND	0.25	0.19	ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	its
877-09-8	Tetrachloro-m-xylene	87%		26-13	32%
877-09-8	Tetrachloro-m-xylene	85%		26-13	32%
2051-24-3	Decachlorobiphenyl	76%		10-1	18%
2051-24-3	Decachlorobiphenyl	82%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Ву

AN

Prep Date

05/13/16

Page 1 of 3

Client Sample ID: MW-20D Lab Sample ID:

AQ - Ground Water

DF

1

JC20184-5

Date Sampled: Date Received:

05/12/16 05/13/16

Matrix: Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Prep Batch

OP93902

Project:

BMSMC, Building 5 Area, PR

Q

E3E3649

Analytical Batch

Run #1

Analyzed

05/14/16

Run #2

File ID

3E83233.D

Initial Volume

Final Volume

910 ml Run #1

1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.5	0.90	ug/I
59-50-7	4-Chloro-3-methyl phenol	ND	5.5	0.98	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.5	2.7	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.5	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.2	0.98	ug/l
	3&4-Methylphenol	ND	2.2	0.97	ug/l
88-75-5	2-Nitrophenol	ND	5.5	1.1	ug/l
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l
87-86-5	Pentachlorophenol	ND	5.5	1.5	ug/l
108-95-2	Phenol	ND	2.2	0.43	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.5	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.5	1.5	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.5	1.0	ug/l
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/I
98-86-2	Acetophenone	ND	2.2	0.23	ug/l
120-12-7	Anthracene	ND	1.1	0.23	ug/l
1912-24-9	Atrazine	ND	2.2	0.49	ug/l
100-52-7	Benzaldehyde	ND	5.5	0.32	ug/l
56-55-3	Benzo(a)anthracene	ND	1:1	0.22	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.23	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.23	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.37	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.44	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.50	ug/l
92-52-4	1,1'-Biphenyl	ND	1.1	0.23	ug/l
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l
106-47-8	4-Chloroaniline	ND	5.5	0.37	ug/l
86-74-8	Carbazole	ND	1.1	0.25	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Client Sample ID:
 MW-20D

 Lab Sample ID:
 JC20184-5
 Date Sampled:
 05/12/16

 Matrix:
 AQ - Ground Water
 Date Received:
 05/13/16

 Method:
 SW846 8270D
 SW846 3510C
 Percent Solids:
 n/a

Project: BMSMC, Building 5 Area, PR

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.2	0.71	ug/l	
218-01-9	Chrysene	ND	1.1	0.19	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.31	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.27	ug/l	
108-60-1	his(2-Chloroisopropyl)ether	ND	2.2	0.44	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.40	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.61	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.52	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.56	ug/l	
123-91-1	1,4-Dioxane	19.6	1.1	0.72	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.36	ug/l	
132-64-9	Dibenzofuran	ND	5.5	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.55	ug/I	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.26	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.29	ug/l	
131-11-3	Dimethyl phthalate	NĐ	2.2	0.24	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.19	ug/l	
86-73-7	Fluorene	ND	1.1	0.19	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.54	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.1	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.36	ug/l	
78-59-1	Isophorone	ND	2.2	0.30	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.29	ug/i	
91-57-6	2-Methylnaphthalene	ND	1.1	0.23	ug/l	
88-74-4	2-Nitroaniline	ND	5.5	0.30	ug/l	
99-09-2	3-Nitroaniline	ND	5.5	0.43	ug/l	4114
100-01-6	4-Nitroaniline	ND	5.5	0.48	ug/l	COCHOODE
98-95-3	Nitrobenzene	ND	2.2	0.71	ug/l	ALL.
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.53	ug/l	infael Infante
86-30-6	N-Nitrosodiphenylamine	ND	5.5	0.24	ug/l	Méndez
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	The second second
129-00-0	Pyrene	ND	1.1	0.24	ug/l	IC = 1888
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.41	ug/i	CO LICENCIAD
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	COLICER
367-12-4	2-Fluorophenol	36%		14-8	8%	

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

. 5

Report of Analysis

Client Sample ID: MW-20D Lab Sample ID: JC20184-5

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: Date Received:

05/12/16 05/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
4165-62-2	Phenol-d5	25%		10-110%
118-79-6	2,4,6-Tribromophenol	77%		39-149%
4165-60-D	Nitrobenzene-d5	67%		32-128%
321-60-8	2-Fluorobiphenyl	73%		35-119%
1718-51-0	Terphenyl-d14	76%		10-126%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: MW-20D Lab Sample ID: JC20184-5

Matrix:

AQ - Ground Water

Method: SW846 8270D BY SIM SW846 3510C Project:

BMSMC, Building 5 Area, PR

Date Sampled: Date Received:

05/12/16 05/13/16

Percent Solids: n/a

File ID DF Analyzed Prep Date **Analytical Batch** By Prep Batch Run #1 3M61326.D 1 05/14/16 IJ 05/13/16 OP93902A E3M2883 Run #2

Initial Volume Final Volume Run #1 910 ml 1.0 ml

Run #2

CAS No. Compound Result RL MDŁ Units Q

91-20-3 Naphthalene ND 0.11 0.032 ug/l

CAS No. Surrogate Recoveries Run#2 Run# 1 Limits

4165-60-0 Nitrobenzene-d5 66% 24-125% 321-60-8 2-Fluorobiphenyl 66% 19-127% 1718-51-0 Terphenyl-d14 78% 10-119%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

36 of 628

Report of Analysis

Page 1 of 1

Client Sample ID: MW-20D Lab Sample ID:

Matrix:

JC20184-5

Method:

AQ - Ground Water SW846-8015C (DAI)

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 05/12/16 Date Received: 05/13/16

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 XPL GH104994.D 1 05/17/16 n/a n/a **GGH5286** Run #2

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	103%		56-1	45%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: MW-20D

Lab Sample ID:

JC20184-5

AQ - Ground Water

DF

1

SW846 8081B SW846 3510C

Date Sampled: Date Received: 05/12/16 05/13/16

Matrix: Method:

Analyzed

05/16/16

Percent Solids:

n/a

Project:

BMSMC, Building 5 Area, PR

Prep Batch

Q

Analytical Batch

Run #1 Run #2

Ву RK

Prep Date 05/13/16

OP93907

G1G3989

Initial Volume 850 ml

File ID

1G123085.D

Final Volume 10.0 ml

Run #1 Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.012	0.0071	ug/l
319-84-6	alpha-BHC	ND	0.012	0.0071	ug/l
319-85-7	beta-BHC	ND	0.012	0.0067	ug/l
319-86-8	delta-BHC	ND	0.012	0.0054	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.012	0.0033	ug/l
5103-71-9	alpha-Chlordane	ND	0.012	0.0054	ug/l
5103-74-2	gamma-Chlordane	ND	0.012	0.0054	ug/l
60-57-1	Dieldrin	ND	0.012	0.0042	ug/l
72-54-8	4,4'-DDD	ND	0.012	0.0045	ug/l
72-55-9	4,4'-DDE	ND	0.012	0.0072	ug/l
50-29-3	4,4'-DDT	ND	0.012	0.0058	ug/l
72-20-8	Endrin	ND	0.012	0.0059	ug/l
1031-07-8	Endosulfan sulfate	ND	0.012	0.0062	ug/l
7421-93-4	Endrin aldehyde	ND	0.012	0.0060	ug/l
53494-70-5	Endrin ketone	ND	0.012	0.0060	ug/l
959-98-8	Endosulfan-I	ND	0.012	0.0058	ug/l
33213-65-9	Endosulfan-II	ND	0.012	0.0050	ug/l
76-44-8	Heptachlor	ND	0.012	0.0045	ug/l
1024-57-3	Heptachlor epoxide	ND	0.012	0.0077	ug/l
72-43-5	Methoxychlor	ND	0.024	0.0067	ug/l
8001-35-2	Toxaphene	ND	0.29	0.22	ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits	
877-09-8	Tetrachloro-m-xylene	99%		26-1	32% /
877-09-8	Tetrachloro-m-xylene	102%		26-1	32%
2051-24-3	Decachlorobiphenyl	67%		10-1	18%
2051-24-3	Decachlorobiphenyl	76%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: **S40S**

Lab Sample ID:

JC20184-6

Matrix:

AQ - Ground Water

SW846 8270D SW846 3510C

Date Sampled: Date Received:

05/12/16 05/13/16

Percent Solids: n/a

Q

Method: Project:

BMSMC, Building 5 Area, PR

Run #1

3E83234.D 1 Analyzed 05/14/16

By Prep Date AN 05/13/16

Prep Batch OP93902

Analytical Batch E3E3649

Run #2

Initial Volume 920 ml

File ID

Final Volume 1.0 ml

DF

Run #1 Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.4	0.89	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.4	0.97	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.4	2.7	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.4	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.2	0.97	ug/l
	3&4-Methylphenol	22.0	2.2	0.96	ug/l
88-75-5	2-Nitrophenol	ND	5.4	1.0	ug/l
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l
87-86-5	Pentachlorophenol	ND	5.4	1.5	ug/l
108-95-2	Phenol	ND	2.2	0.43	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.4	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.4	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.4	1.0	ug/l
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l
98-86-2	Acetophenone	ND	2.2	0.23	ug/l
120-12-7	Anthracene	ND	1.1	0.23	ug/l
1912-24-9	Atrazine	ND	2.2	0.49	ug/l
100-52-7	Benzaldehyde	ND	5.4	0.31	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.22	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.23	ug/l
205-99-2	Benzo(b) fluoranthene	ND	1.1	0.22	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.37	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1,1	0.22	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.44	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.50	ug/l
92-52-4	1,1'-Biphenyl	ND	1.1	0.23	ug/l
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l
106-47-8	4-Chloroaniline	ND	5.4	0.37	ug/l
86-74-8	Carbazole	ND	1.1	0.25	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.6

Client Sample ID: S40S

Lab Sample ID: JC20184-6

Matrix:

AQ - Ground Water

Method: Project: SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Dat

Date Sampled: 05/12/16 **Date Received:** 05/13/16

Percent Solids: n/a

ABN TCL Special List

12211102	Operation 2000					
CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.2	0.71	ug/l	
218-01-9	Chrysene	ND	1.1	0.19	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.30	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.27	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.44	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.40	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.60	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.52	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.55	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.36	ug/l	
132-64-9	Dibenzofuran	ND	5.4	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.54	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.25	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.28	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.18	ug/l	
86-73-7	Fluorene	ND	1.1	0.19	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.35	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.53	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.0	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.42	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.36	ug/l	
78-59-1	Isophorone	ND	2.2	0.30	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1:1	0.23	ug/l	
88-74-4	2-Nitroaniline	ND	5.4	0.30	ug/l	
99-09-2	3-Nitroaniline	ND	5.4	0.42	ug/l	
100-01-6	4-Nitroaniline	ND	5.4	0.48	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.70	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.52	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.4	0.24	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	N. Chin
129-00-0	Pyrene	ND	1.1	0.24	ug/l	0
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.40	ug/l	/ 3
	ÉÍ					(3)
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lin	its	11.50
367-12-4	2-Fluorophenol	37%		14-9	88%	100
4165-62-2	Phenol-d5	22%			110%	4
		2270		10		1.3

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

I fact Infante Méndez I(= 1888

Page 3 of 3

Client Sample ID: S40S

Lab Sample ID:

JC20184-6

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: Date Received:

05/12/16 05/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	72%		39-149%
4165-60-0	Nitrobenzene-d5	58%		32-128%
321-60-8	2-Fluorobiphenyl	64%		35-119%
1718-51-0	Terphenyl-d14	68%		10-126%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

lau-	Sample	TD.	CARC
CREGG	committee	III.	S40S

Lab Sample ID:

JC20184-6

AQ - Ground Water

Date Sampled:

05/12/16

Matrix: Method:

SW846 8270D BY SIM SW846 3510C

Date Received: Percent Solids:

05/13/16 n/a

Project:

BMSMC, Building 5 Area, PR

Analytical Batch File ID DF Analyzed Prep Date Prep Batch Ву E3M2883 Run #1 3M61327.D 05/14/16 IJ 05/13/16 OP93902A

Run #2

Initial Volume Final Volume 920 ml

Run #1

1.0 ml

Run #2

RL CAS No. Compound Result MDL Units Q

91-20-3 Naphthalene ND 0.11 0.032 ug/l 123-91-1 1,4-Dioxane 0.053 1.22 0.11 ug/l

CAS No. Surrogate Recoveries Run#1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 57% 24-125% 321-60-8 2-Fluorobiphenyl 63% 19-127% 1718-51-0 Terphenyl-d14 76% 10-119%

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

By

XPL

05/17/16

Page 1 of 1

Client Sample ID: **S40S**

Lab Sample ID:

JC20184-6

Matrix: Method: AQ - Ground Water

SW846-8015C (DAI)

1

Date Sampled: Date Received:

05/12/16 05/13/16

Percent Solids: n/a

Q

Prep Date

n/a

Project: BMSMC, Building 5 Area, PR

GH104995.D

File ID DF Analyzed

Prep Batch **Analytical Batch** n/a GGH5286

Run #1 Run #2

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
64-17-5	Ethanol	ND	100	55	ug/l
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3	Нехалоі	101%		56-1	45%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS Accutest

Report of Analysis

Page 1 of 1

Client Sample ID: S40S

Lab Sample ID:

JC20184-6

Matrix:

AQ - Ground Water

Method:

SW846 8081B SW846 3510C

Date Sampled: Date Received: 05/13/16

05/12/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Q

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** RK 05/13/16 OP93907 G1G3989 Run #1 1G123086.D 1 05/16/16

Run #2

Initial Volume Final Volume

Run #1 850 ml 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.012	0.0071	ug/l
319-84-6	alpha-BHC	ND	0.012	0.0071	ug/l
319-85-7	beta-BHC	ND	0.012	0.0067	ug/l
319-86-8	delta-BHC	ND	0.012	0.0054	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.012	0.0033	ug/l
5103-71-9	alpha-Chlordane	ND	0.012	0.0054	ug/l
5103-74-2	gamma-Chlordane	ND	0.012	0.0054	ug/l
60-57-1	Dieldrin	ND	0.012	0.0042	ug/l
72-54-8	4,4'-DDD	ND	0.012	0.0045	ug/l
72-55-9	4,4'-DDE	ND	0.012	0.0072	ug/l
50-29-3	4,4'-DDT	ND	0.012	0.0058	ug/l
72-20-8	Endrin	ND	0.012	0.0059	ug/l
1031-07-8	Endosulfan sulfate	ND	0.012	0.0062	ug/l
7421-93-4	Endrin aldehyde	ND	0.012	0.0060	ug/l
53494-70-5	Endrin ketone	ND	0.012	0.0060	ug/l
959-98-8	Endosulfan-I	ND	0.012	0.0058	ug/l
33213-65-9	Endosulfan-II	ND	0.012	0.0050	ug/l
76-44-8	Heptachlor	ND	0.012	0.0045	ug/l
1024-57-3	Heptachlor epoxide	ND	0.012	0.0077	ug/l
72-43-5	Methoxychlor	ND	0.024	0.0067	ug/l
8001-35-2	Toxaphene	ND	0.29	0.22	ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	97%		26-13	32%
877-09-8	Tetrachloro-m-xylene	91%		26-13	32%
2051-24-3	Decachlorobiphenyl	74%		10-1	18%
2051-24-3	Decachlorobiphenyl	78%		10-1	18%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC20184

Account:

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Building 5 Area, PR

Sample File ID JC20184-3MS GH104991.I JC20184-3MSD GH104992.I JC20184-3 GH104990.I) 1	Analyzed 05/17/16 05/17/16 05/17/16	By XPL XPL XPL	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch GGH5286 GGH5286 GGH5286
--	-----	--	-------------------------	--------------------------------	---------------------------------	---

The QC reported here applies to the following samples:

Method: SW846-8015C (DAI)

JC20184-1, JC20184-2, JC20184-3, JC20184-4, JC20184-5, JC20184-6

CAS No.	Compound	JC20184-3 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
64-17-5 78-83-1 67-63-0 71-23-8 71-36-3 78-92-2 67-56-1	Ethanol Isobutyl Alcohol Isopropyl Alcohol n-Propyl Alcohol n-Butyl Alcohol sec-Butyl Alcohol Methanol	ND ND ND ND ND ND	5000 5000 5000 5000 5000 5000 5000	5920 5820 5190 6040 6130 5550 4440	118 116 104 121 123 111 89	5000 5000 5000 5000 5000 5000 5000	5690 6130 5320 6170 6200 5610 5080	114 123 106 123 124 112 102	4 5 2 2 1 1 13	58-145/27 69-131/25 70-133/28 66-137/29 63-131/25 64-136/25 48-148/34
CAS No.	Surrogate Recoveries Hexanol	MS 84%	MSD 91%	JC	201 84-3 %	Limits 56-145	%	WE W	DCH00	May 1

^{* =} Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC20184

AMANYWP Anderson, Mulholland & Associates Account:

BMSMC, Building 5 Area, PR Project:

OP93907-MS 1G123145.D 1 05 OP93907-MSD 1G123146.D 1 05	nalyzed By 5/17/16 RK 5/17/16 RK 5/16/16 RK	Prep Date 05/13/16 05/13/16 05/13/16	Prep Batch OP93907 OP93907 OP93907	Analytical Batch G1G3990 G1G3990 G1G3989
---	--	---	---	---

The QC reported here applies to the following samples:

Method: SW846 8081B

JC20184-1, JC20184-2, JC20184-3, JC20184-4, JC20184-5, JC20184-6

		JC2018	4-3	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
309-00-2	Aldrin	ND		0.288	0.32	111	0.288	0.32	111	0	37-159/40
319-84-6	alpha-BHC	ND		0.288	0.31	108	0.288	0.31	108	0	37-164/37
319-85-7	beta-BHC	ND		0.288	0.33	115	0.288	0.35	122	6	46-151/36
319-86-8	delta-BHC	ND		0.288	0.31	108	0.288	0.32	111	3	32-168/36
58-89-9	gamma-BHC (Lindane)	ND		0.288	0.32	111	0.288	0.32	111	Ð	44-160/37
5103-71-9	alpha-Chlordane	ND		0.288	0.35	122	0.288	0.37	129	6	38-160/35
5103-74-2	gamma-Chlordane	ND		0.288	0.32	111	0.288	0.33	115	3	39-157/37
60-57-1	Dieldrin	ND		0.288	0.33	115	0.288	0.34	118	3	42-161/36
72-54-8	4,4'-DDD	ND		0.288	0.33	115	0.288	0.34	118	3	40-161/36
72-55-9	4,4'-DDE	ND		0.288	0.32	111	0.288	0.33	115	3	34-158/36
50-29-3	4,4'-DDT	ND		0.288	0.31	108	0.288	0.31	108	0	41-173/33
72-20-8	Endrin	ND		0.288	0.34	118	0.288	0.35	122	3	44-166/35
1031-07-8	Endosulfan sulfate	ND		0.288	0.29	101	0.288	0.31	108	7	46-161/36
7421-93-4	Endrin aldehyde	ND		0.288	0.33	115	0.288	0.34	118	3	34-149/36
53494-70-5		ND		0.288	0.31	108	0.288	0.32	111	3	44-157/36
959-98-8	Endosulfan-I	ND		0.288	0.32	111	0.288	0.33	115	3	43-154/35
	Endosulfan-II	ND		0.288	0.32	111	0.288	0.34	118	6	40-162/35
76-44-8	Heptachlor	ND		0.288	0.31	108	0.288	0.31	108	0	33-153/37
1024-57-3	Heptachlor epoxide	ND		0.288	0.33	115	0.288	0.34	118	3	45-154/37
72-43-5	Methoxychlor	ND		0.288	0.31	108	0.288	0.32	111	3	48-169/32
8001-35-2	Toxaphene	ND			ND			ND		nc	50-150/30
CAS No.	Surrogate Recoveries	MS		DZM	J	C20184-3	Limits				
877-09-8	Tetrachloro-m-xylene	96%		94%	1	19%	26-132	%	128	SOCIADO	De.
877-09-8	Tetrachloro-m-xylene	88%		84%	9	7%	26-132	%	Br.		19/4
2051-24-3	Decachlorobiphenyl	74%		79%	8:	1%	10-118	%	15		inte 📳
2051-24-3	Decachlorobiphenyl	74%		77%	70	6%	10-118	%	3	fael Infa Méndez	11111

^{* =} Outside of Control Limits.

Method: SW846 8270D

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC20184

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, PR

OP93902-MSD 3E83236.D 1 05/14/16 AN 05/13/16 OP93902 E3E3649 JC20184-3 3E83231.D 1 05/14/16 AN 05/13/16 OP93902 E3E3649			DF 1 1					
--	--	--	--------------	--	--	--	--	--

The QC reported here applies to the following samples:

JC20184-1, JC20184-2, JC20184-3, JC20184-4, JC20184-5, JC20184-6

		JC20184	4	ike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/I	Q ug	<i>/</i> I	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
95-57-8	2-Chlorophenol	ND	55	.6	32.4	58	55.6	34.2	62	5	49-110/20
59-50-7	4-Chloro-3-methyl phenol	ND	55	.6	39.3	71	55.6	36.7	66	7	44-121/18
120-83-2	2,4-Dichlorophenol	ND	55	6.6	45.8	82	55.6	43.8	79	4	42-120/19
105-67-9	2,4-Dimethylphenol	ND	55	6.6	41.1	74	55.6	40.6	73	1	33-132/23
51-28-5	2,4-Dinitrophenol	ND	11	1	94.8	85	111	84.9	76	11	21-145/26
534-52-1	4,6-Dinitro-o-cresol	ND	55	i.6	41.1	74	55.6	38.5	69	7	25-134/27
95-48-7	2-Methylphenol	ND	55	.6	30.7	55	55.6	31.4	57	2	47-112/18
	3&4-Methylphenol	ND	55	i.6	30.3	55	55.6	29.7	53	2	44-113/19
88-75-5	2-Nitrophenol	ND	55	.6	34.4	62	55.6	35.7	64	4	45-118/20
100-02-7	4-Nitrophenol	ND	55	6.6	28.4	51	55.6	27.3	49	4	23-144/28
87-86-5	Pentachlorophenol	ND	55	i.6	39.5	71	55.6	33.5	60	16	25-151/25
108-95-2	Phenol	ND		.6	17.4	31	55.6	17.1	31	2	22-100/22
58-90-2	2,3,4,6-Tetrachlorophenol	ND	55		46.7	84	55.6	41.5	75	12	44-122/21
95-95-4	2,4,5-Trichlorophenol	ND	55	i.6	41.6	75	55.6	38.9	70	7	51-124/20
88-06-2	2,4,6-Trichlorophenol	ND	55		47.8	86	55.6	43.4	78	10	53-120/21
83-32-9	Acenaphthene	ND	55		38.3	69	55.6	38.5	69	1	52-120/23
208-96-8	Acenaphthylene	ND	55		35.2	63	55.6	35.3	64	0	50-101/22
98-86-2	Acetophenone	ND	55		32.5	59	55.6	34.5	62	6	31-141/23
120-12-7	Anthracene	ND	55		36.3	65	55.6	34.4	62	5	54-117/22
1912-24-9	Atrazine	ND		i.6	50.7	91	55.6	49.0	88	3	42-152/23
100-52-7	Benzaldehyde	ND		6.6	33.1	60	55.6	35.6	64	7	10-164/30
56-55-3	Benzo(a)anthracene	ND		.6	39.1	70	55.6	34.7	62	12	40-123/24
50-32-8	Benzo(a)pyrene	ND		i.6	36.1	65	55.6	32.1	58	12	41-127/25
205-99-2	Benzo(b)fluoranthene	ND		i.6	40.2	72	55.6	36.0	65	11	39-127/27
191-24-2	Benzo(g,h,i)perylene	ND		6.6	39.5	71	55.6	35.1	63	12	34-128/28
207-08-9	Benzo(k)fluoranthene	ND		.6	40.9	74	55.6	35.8	64	13	39-122/26
101-55-3	4-Bromophenyl phenyl ether	ND		i.6	46.4	84	55.6	44.4	80	4	51-124/23
85-68-7	Butyl benzyl phthalate	ND		i.6	33.2	60	55.6	31.0	56	7	21-146/28
92-52-4	1,1'-Biphenyl	ND		i.6	38.2	69	55.6	38.7	70	i	27-142/23
91-58-7	2-Chloronaphthalene	ND		i.6	38.1	69	55.6	39.1	70	3	51-109/23
106-47-8	4-Chloroaniline	ND		.6	30.3	55	55.6	30.9	56	2	10-110/55
86-74-8	Carbazole	ND		i.6	39.9	72	55.6	37.2	67	7	52-116/22
105-60-2	Caprolactam	ND		i.6	12.1	22	55.6	11.9	21	2	10-106/34
218-01-9	Chrysene	ND		.6	38.2	69	55.6	35.700		7	41-128/24
111-91-1	bis(2-Chloroethoxy)methane	ND		i.6	33.2	60	55.6	36	ME AF	N	46-120/24
111-44-4	bis(2-Chloroethyl)ether	ND		i.6	31.6	57	55.6/	35.7	66	2	42-123/28
		. 14.5	Ju		31.0	01	05.0	Ann.	no /	153	72-123/20

^{* =} Outside of Control Limits.

li dael Infante Méndez. K = 1888

66 of 628 **ACCUTEST**

Page 2 of 3

Matrix Spike/Matrix Spike Duplicate Summary Job Number: JC20184

Account:

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Building 5 Area, PR

Sample File ID OP93902-MS 3E83235.D OP93902-MSD 3E83236.D JC20184-3 3E83231.D	DF 1 1	Analyzed 05/14/16 05/14/16 05/14/16	By AN AN AN	Prep Date 05/13/16 05/13/16 05/13/16	Prep Batch OP93902 OP93902 OP93902	Analytical Batch E3E3649 E3E3649 E3E3649
---	--------------	--	----------------------	---	---	---

The QC reported here applies to the following samples:

Method: SW846 8270D

JC20184-1, JC20184-2, JC20184-3, JC20184-4, JC20184-5, JC20184-6

CAS No.	Compound	JC20184-3 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
108-60-1	bis(2-Chloroisopropyl)ether	ND	55.6	30.1	54	55.6	31.4	57	4	41-117/25
7005-72-3	4-Chlorophenyl phenyl ether	ND	55.6	46.7	84	55.6	44.1	79	6	48-121/21
121-14-2	2,4-Dinitrotoluene	ND	55.6	41.7	75	55.6	38.9	70	7	54-123/27
606-20-2	2,6-Dinitrotoluene	ND	55.6	41.7	75	55.6	39.5	71	5	55-125/26
91-94-1	3,3'-Dichlorobenzidine	ND	111	60.1	54	111	57.6	52	4	10-107/47
123-91-1	1,4-Dioxane	27.2	55.6	55.5	51	55.6	56.7	53	2	10-119/31
53-70-3	Dibenzo(a,h)anthracene	ND	55.6	41.1	74	55.6	36.3	65	12	35-130/27
132-64-9	Dibenzofuran	ND	55.6	40.7	73	55.6	39.8	72	2	53-112/22
84-74-2	Di-n-butyl phthalate	ND	55.6	39.7	71	55.6	36.1	65	9	38-129/23
117-84-0	Di-n-octyl phthalate	ND	55.6	31.8	57	55.6	28.9	52	10	35-145/26
84-66-2	Diethyl phthalate	ND	55.6	42.0	76	55.6	40.1	72	5	16-136/30
131-11-3	Dimethyl phthalate	ND	55.6	42.8	77	55.6	40.0	72	7	10-143/39
117-81-7	bis(2-Ethylhexyl)phthalate	ND	55.6	32.9	59	55.6	30.7	55	7	34-141/28
206-44-0	Fluoranthene	ND	55.6	44.1	79	55.6	40.8	73	8	47-123/24
86-73-7	Fluorene	ND	55.6	40.2	72	55.6	38.5	69	4	56-117/22
118-74-1	Hexachlorobenzene	ND	55.6	45.5	82	55.6	43.2	78	5	46-125/24
87-68-3	Hexachlorobutadiene	ND	55.6	41.9	75	55.6	45.8	82	9	26-121/24
77-47-4	Hexachlorocyclopentadiene	ND	111	41.7	38	111	46.3	42	10	10-133/31
67-72-1	Hexachloroethane	ND	55.6	38.0	68	55.6	40.7	73	7	35-111/26
193-39-5	Indeno(1,2,3-cd)pyrene	ND	55.6	39.5	71	55.6	33.5	60	16	32-130/30
78-59-1	Isophorone	ND	55.6	34.7	62	55.6	38.0	68	9	47-126/23
90-12-0	1-Methylnaphthalene	ND	55.6	37.7	68	55.6	40.8	73	8	34-124/25
91-57-6	2-Methylnaphthalene	ND	55.6	37.9	68	55.6	39.7	71	5	34-123/24
88-74-4	2-Nitroaniline	ND	55.6	38.6	69	55.6	36.7	66	5	46-137/23
99-09-2	3-Nitroaniline	ND	55.6	32.8	59	55.6	31.1	56	5	10-110/50
100-01-6	4-Nitroaniline	ND	55.6	40.0	72	55.6	35.1	63	13	38-118/25
98-95-3	Nitrobenzene	ND	55.6	34.4	62	55.6	38.1	69	10	35-130/25
621-64-7	N-Nitroso-di-n-propylamine	ND	55.6	29.4	53	55.6	30.1	54	2	45-123/22
86-30-6	N-Nitrosodiphenylamine	ND	55.6	36.9	66	55.6	34.7	62	6	46-123/24
85-01-8	Phenanthrene	ND	55.6	38.4	69	55.6	35.8	64	7	48-121/23
129-00-0	Pyrene	ND	55.6	40.4	73	55.6	37.0	67	9	43-124/26
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	55.6	50.1	90	55.6	50.9	92	2	25-142/24
								SOCI	MA AN	

fael Infante Méndez IC # 1888

CO LICENCIAD

^{* =} Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary Job Number: JC20184

Account:

AMANYWP Anderson, Mulholland & Associates

BMSMC, Building 5 Area, PR Project:

Sample OP93902-MS OP93902-MSD JC20184-3	File ID 3E83235.D 3E83236.D 3E83231.D	DF 1 1	Analyzed 05/14/16 05/14/16 05/14/16	By AN AN AN	Prep Date 05/13/16 05/13/16 05/13/16	Prep Batch OP93902 OP93902 OP93902	Analytical Batch E3E3649 E3E3649 E3E3649
--	--	--------------	--	----------------------	---	---	---

The QC reported here applies to the following samples:

Method: SW846 8270D

JC20184-1, JC20184-2, JC20184-3, JC20184-4, JC20184-5, JC20184-6

CAS No.	Surrogate Recoveries	MS	MSD	JC20184-3	Limits
367-12-4	2-Fluorophenol	43%	47%	33%	14-88%
4165-62-2	•	31%	32%	22%	10-110%
118-79-6	2,4,6-Tribromophenol	83%	76%	70%	39-149%
4165-60-0	Nitrobenzene-d5	64%	71%	55%	32-128%
321-60-8	2-Fluorobiphenyl	75%	75%	63%	35-119%
1718-51-0	Terphenyl-d14	74%	68%	61%	10-126%

^{* =} Outside of Control Limits.

Page 1 of 1

Job Number: JC20184

Account:

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Building 5 Area, PR

Sample File ID D OP93902A-MS 3M61320.D 1 OP93902A-MSD 3M61321.D 1 JC20184-3 3M61324.D 1	DF Analyzed 1 05/14/16 1 05/14/16 1 05/14/16	By Prep Date JJ 05/13/16 JJ 05/13/16 JJ 05/13/16	Prep Batch OP93902A OP93902A OP93902A	Analytical Batch E3M2883 E3M2883 E3M2883
---	--	--	--	---

The QC reported here applies to the following samples:

Method: SW846 8270D BY SIM

JC20184-1, JC20184-2, JC20184-3, JC20184-4, JC20184-5, JC20184-6

CAS No.	Compound	JC20184-3 ug/l Q	Spike ug/l	MS MS ug/l %	Spike MSD ug/l ug/l	MSD %	RPD	Limits Rec/RPD
91-20-3 123-91-1	Naphthalene 1,4-Dioxane	ND 26.1 E	2.08 2.08	1.41 68 7.37 0 ^a a	2.08 1.22 2.08 7.40	59 0* *	14 0	23-140/36 20-160/30
CAS No.	Surrogate Recoveries	MS	MSD	JC20184-3	Limits			
4165-60-0 321-60-8 1718-51-0	Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	68% 71% 92%	59% 65% 86%	54% 66% 74%	24-125% 19-127% 10-119%			

(a) Outside control limits due to high level in sample relative to spike amount.

^{* =} Outside of Control Limits.

CHAIN OF CUSTODY SCHOOLSTORY	\".	*							Transaction		-	_	-		_	_		_	_	-	
Anderson Mulhalland Associate The Anne State Mu	SURV. 1995		2235	SGS Ac Rouse 13 29-0200	cutest - 1 0. Days: FAX.	Dayton m, NJ 40 712-329-	Uk 10								360	95	1	Core	m 3	-	
TOO West-claster To HUMA CAD PR TO HUMA CAD	Common Name	Project Norme	Λ ,	ب را المسلك	Λ			- W	1		4						E014				Matrix Codes
HUMBACAO FOR TAYLOR TOTAL T		BMS	Rek	ace	HS	30,	55/	Mer	11			۵	اً لِـ	2 2							DW - Ditniang War OW - Ground Wal
HUMBACAO FOR TAYLOR TOTAL T	2700 Westchester			District of		on (If an	arout I	term dies	namiking nami kui			2			Ĭ						WW - Water SW - Surface Water
THE LAYER AND	Purchase NY	HUMA COO	DA	Carpe	ly Patrice						\neg	2	514	账	7			lΙ		i	Sil- Gludge
The property of the property o	Broad Contact	Pitnac) il	-14	Street A	artifer)				_					ģ	4	-	ĺ		- 1		01-ca
The content of the	Problem C. L. CARGON	Claims Purchase Order 8		City			_	Man			_(.	- P	<u> </u>	2	7	ſ					AIR - Air
Field B / Port of Collection The Survey of Su	9 (4 + 25) - 0400									240	- [.	3	دُ ادَّ		84		1				FIL-Pold Block
The content of the	N. Kluera, T. Taylor, D. Lindstra	nt)		Attention	v:						7	쉬:	۶١:	3 8	2			1 1			RB-Rosse Blant
Lamburghou Time Bearmed agri Supplied	902		Cottection	-				Marshar (d grames,	al Person	\exists	일 S	5 4		#		l				18-10p Earte
Lamburghou Time Bearmed agri Supplied	l and	MCO-stoler Day		Sumpress				5 8 3		E 15	П	<u>S</u> 3	뒤길		뒭	1		H			
S-40D 05/W6 5577 WR GW 6 3 3 X X X X X X X X X X X X X X X X X	-/ RA 20-GWD	ASIT III	1500	مهمور	0./		1 1	= 1	7	3 4	\vdash			Ŧ,	7	-			-		
3 9 3 9 0 MS SITULE 1200 TT GW 6 3 3 3 X X X X X X X X X X X X X X X X		ASJULV	-	-		0		++	-	╁┼	-	X X		X	+	-		\vdash	-		
S39D-MSD 25/12/16 1220 17 GN 6 3 3 X X X X X X X X X X X X X X X X X	NS 39 D	05/12/14				_	7	++	12	+	╁┼	Ò X	- 1 X	· 12	-	-	\vdash			_	286
Sample Consequence Sample	3 / 9 39 D-M5	05/12/16	12.00					++		+-	H:		쉬숙	¥	-اخ	+	\vdash				 -
SHOW TO DESCRIPT THE (Discrete day) MATTIN ACCORDING TO DESCRIPT THE (Discrete day) MATTIN ACCORDING TO DESCRIPT THE (DISCRETE DAY) MATTIN ACCORDING TO DESCRIPT THE (DISCRETE DAY) MATTIN ACCORDING TO DESCRIPT THE (DISCRETE DAY) MATTIN ACCORDING TO DESCRIPT THE (DISCRETE DAY) MATTIN ACCORDING TO DESCRIPT THE CONTROL OF THE		05/12/16	1200	17	GN	6	-	11				X >		16	7	1-		-	+	+	
SAUS STATE SAUS STATE SAUS		05/12/16	1220			6	3					215	र्दा	V	+	+		\rightarrow		+	
Tumarrier's Time Disserved days		05/12/16	1329	NR	GW	6	3				١,	(k		Τ̈́	-		\neg	\dashv	+	-	
Tumaryum Time (Basemed days) State State	-6 5405	05/c/u	450	11	SW.	1.	3	\prod	3		_ x	$\langle $	12	农	7						
Tumaryum Time (Basemed days) Data Deliverable Information	No.	,	•					Ш							1			\rightarrow	\neg		
Tumbried Time (Discrete days) Approved By \$665 Accounts the (Date Approved By \$665 Accounts the (Date Stay \$61564								11		Ш					MOD	11.0		Les or	1	, A	
Stat. 10 Binament Days For Soil Stang Ics Stang Ic							Ц.,	#	1	$\sqcup \sqcup$	\perp	_	┸		\vdash						
Start to Describe Days For Son Start to Star	Tumerpater Time (Systems days)	可以一个时间	The top late	1.000000		Deta		Total lad	Ц	Ш	-				LABE	LVE	RIPID	ATION	1		
Solve Russes State Found						M"A" IL	PV(1)		×	VAEP CH	-	A				Come	/	Sporut i	Lt /		
Converged Conv		3							$\overline{}$				H	O to	<u>। स्</u>	POC		170	<u> 1441</u>	Дар	tringiene
AL Data of Known Charles Properties	2 Day 80/94		- 1				•		۵ ا	70 Ferm	-		W.	<u> </u>	SV	001	Mo	thod	8	270	D
Commercial "A" = Results Only, Commercial "A" = Results Only, Commercial "B" = Results Only,	KINNEW FOR Anveous con	mples		_			-	r Francis		-										-	
Sample Custody reads for decomposing Sample Custody reads for decomposing Sample States and the Custody reads for the Custody reads for the Custody reads for the Custody States and States	Enwante & Hast 155 one evaluate VALuates		ľ		M "A" + 19	esults De	y, Com				Surner	ury.									
Anthropothed by Tannar State Vision State Vi	The Tree are post of the	Sample Gustady mu	of the designment	rel Medical Private Seals				ry • Peri change	posses	ista iston, Ini	cludin	g courie	Sam	ple in							
Anthropothed by Tannar State Vision State Vi	1 NW JAW 05/12	16300 Fed	EX			ľ		7	$\sqrt{}$						- T	7		By:	1	/	
Action 1	2 September of Printers	Sample of Dy:					-							_		- 1	-	Dy: /			
10 J.9, B.4, J.4	S Date Trans.	5				2	77	75.4	120	6	-	*	Preserv	-	a nonficul	<u>[4</u>		/	w top	Contra	long
							إدر	-11	131	2 13	heat 9	Hard		70	_	_				2.9	3.4, 3.

JC20184: Chain of Custody Page 1 of 3

EXECUTIVE NARRATIVE

SDG No:

JC20184

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8270D

Number of Samples:

8

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Eight (8) samples were analyzed for the ABN TCL list following method SW846-8270D; Naphthalene and 1,4-Dioxane were also analyzed by SW846-8270D using the selective ion monitoring (SIM) technique. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 —Revision 0. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Maior:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

- 1. Initial and continuing calibration verifications meet the required criteria. Analytes not meeting the method % difference criteria meet the guidance document performance criteria for continuing calibration verification of \pm 25 or 40 %, no action taken. No closing calibration verification included in data package. No action taken, professional judgment.
- 2. Analytes not meeting the continuing calibration verification criteria of the guidance document (hexachlorobutadiene and 1,2,4,5-tetrachlorobenzene) were qualified UJ in

samples JC20184-1 to JC20184-6.

3. MS/MSD % recoveries outside control limits for 1,4-Dioxane in JC20184-3 (SIM). No

action taken, sample concentration high compared to amount spiked.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 188

Signature:

Date:

May 25, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC20184-1

Sample location: BMSMC Building 5 Area

Sampling date: 5/11/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lah Flag	Validation	Renortable
2-Chlorophenol	5.6	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.6	ug/l	1	_	Ü	Yes
2,4-Dichlorophenol	2.2	ug/l	1	_	Ü	Yes
2,4-Dimethylphenol	5.6	ug/l	1	_	Ü	Yes
2,4-Dinitrophenol	11	ug/i	1	_	Ü	Yes
4,6-Dinitro-o-cresol	5.6	ug/l	1	-	Ü	Yes
2-Methylphenol	2.2	ug/l	1	-	Ū	Yes
3&4-Methylphenol	2.2	ug/l	1	_	Ū	Yes
2-Nitrophenol	5.6	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	5.6	ug/l	1	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.6	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.6	ug/l	1	-	Ų	Yes
2,4,6-Trichlorophenol	5.6	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U,	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.6	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.6	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis (2-Chloroethoxy) methane	2.2	ug/l	1	-	U	Yes
bis (2-Chloroethyl) ether	2.2	ug/l	1	-	U	Yes

יייייייייייייייייייייייייייייייייייייי						
Analyte Name	Result		Dilution Factor	Lab Flag		•
bis(2-Chloroisopropyl)ether	2.2	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/l	1	-	Ų	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	-	U	Yes
1,4-Dioxane	349	ug/l	10	-	-	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.6	ug/l	1	-	Ų	Yes
Di-n-butyl phthalate	2.2	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.2	ug/l	1	~	U	Yes
Diethyl phthalate	2.2	ug/l	1	-	U	Yes
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	U	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	UJ	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.2	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes
Isophorone	2.2	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	⊗ _	U	Yes
2-Nitroaniline	5.6	ug/l	1	-	ŧ	Yes
3-Nitroaniline	5.6	ug/l	1	-	U	Yes
4-Nitroaniline	5.6	ug/l	1	-	U	Yes
Nitrobenzene	2.2	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	: 1	-	UJ	Yes
Nitrosodiphenylamine	5.6	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	Uj	Yes
METHOD:	8270D (SI	M)				
Naphthalene	0.11	ug/l	1	-	U e	Yes

Analyte Name

Result Units Dilution Factor Lab Flag Validation Reportable

Sample ID: JC20184-2

Sample location: BMSMC Building 5 Area

Sampling date: 5/11/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.6	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.6	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.6	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.6	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.6	ug/i	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	5.6	ug/l	₂₃ 1	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.6	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.6	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.6	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	87	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.6	ug/l	1	- X	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.6	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	§5 -	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes

Result 2.2		Dilution Factor	Lab Flag	Validation	Reportable
2.2					
2.2	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
1.1	ug/l	1	-	U	Yes
1.1	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
1.1	ug/l	1	-	U	Yes
5.6	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
1.1	ug/l	1	-	U	Yes
1.1	ug/l	1	-	U	Yes
1.1	ug/l	1	-	U	Yes
1.1	ug/l	1	-	UJ	Yes
11	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
1.1	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
1.1	ug/l	1	-	U	Yes
1.1	ug/l	1	-	U	Yes
5.6	ug/l	1	-	U	Yes
5.6	ug/l	1	-	U	Yes
5.6	ug/l	1 ::::	-	U	Yes
2.2	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
5.6	ug/l	1	-	U	Yes
1.1	ug/l	1	-	U	Yes
1.1	ug/l	g 1	-	U	Yes
2.2	ug/l	1	-	UJ	Yes
8270D (SI	M)				
0.11	•	1	-	U	Yes
5.32	_	1	-	-	Yes
	2.2 2.2 1.1 1.1 2.2 1.1 5.6 2.2 2.2 2.2 2.2 1.1 1.1 1.1 1.1 1.1 1.1	2.2 ug/l 2.2 ug/l 1.1 ug/l 1.1 ug/l 2.2 ug/l 1.1 ug/l 5.6 ug/l 2.2 ug/l 2.2 ug/l 2.2 ug/l 2.2 ug/l 1.1 ug/l 2.2 ug/l 2.2 ug/l 1.1 ug/l 1.1 ug/l 1.1 ug/l 2.2 ug/l 5.6 ug/l 5.6 ug/l 2.2 ug/l 2.2 ug/l 5.6 ug/l 3.1 ug/l 3.1 ug/l 3.2 ug/l	2.2 ug/l 1 2.2 ug/l 1 1.1 ug/l 1 1.1 ug/l 1 2.2 ug/l 1 1.1 ug/l 1 5.6 ug/l 1 2.2 ug/l 1 2.2 ug/l 1 2.2 ug/l 1 2.2 ug/l 1 1.1 ug/l 1 2.2 ug/l 1 2.2 ug/l 1 2.2 ug/l 1 3.6 ug/l 1 5.6 ug/l 1 1.1 ug/l 1	2.2 ug/l 1 2.2 ug/l 1 1.1 ug/l 1 1.1 ug/l 1 2.2 ug/l 1 2.2 ug/l 1 1.1 ug/l 1 5.6 ug/l 1 2.2 ug/l 1 1.1 ug/l 1 2.2 ug/l 1 1.1 ug/l 1 1.1 ug/l 1 2.2 ug/l 1	2.2 ug/l 1 - U 2.2 ug/l 1 - U 1.1 ug/l 1 - U 1.1 ug/l 1 - U 2.2 ug/l 1 - U 1.1 ug/l 1 - U 2.2 ug/l 1 - U 1.1 ug/l 1 - U 2.2 ug/l 1 - U 2.2 ug/l 1 - U 3.6 ug/l 1 - U 5.6 ug

Analyte Name

Result

Units Dilution Factor Lab Flag Validation Reportable

Sample ID: JC20184-3

Sample location: BMSMC Building 5 Area

Sampling date: 5/12/2016 Matrix: Groundwater

Analyte Name	Result	Units I	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.6	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.6	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.6	ug/l	y 1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.6	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.6	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	5.6	ug/l	1	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.6	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.6	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.6	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.6	ug/l	1	,-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.6	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	~	U	Yes

WEITIOD.	02700					
Analyte Name	Result		Dilution Factor	Lab Flag		•
bis(2-Chloroethyl)ether	2.2	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.2	ug/l	1 '	-	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	-	Ü	Yes
1,4-Dioxane	27.2	ug/l	1	-	•	Yes
Dibenzo(a,h)anthracene	5.6	ug/l	1	-	U	Yes
Dibenzofuran	2.2	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.2	ug/l	1	-	U	Yes
Diethyl phthalate	2.2	ug/l	1	-	U	Yes
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	1.1	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	U	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	11	ug/l	1	-	UJ	Yes
Hexachlorocyclopentadiene	2.2	ug/l	1	-	U	Yes
Hexachloroethane	1.1	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	2.2	ug/l	1	-	U	Yes
Isophorone	1.1	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	5.6	ug/l	1	-	U	Yes
2-Nitroaniline	5.6	ug/l	1	-	U	Yes
3-Nitroaniline	5.6	ug/l	1	-	U	Yes
4-Nitroaniline	2.2	ug/l	1	-	U	Yes
Nitrobenzene	2.2	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	5.6	ug/l	1	-	U	Yes
N-Nitrosodiphenylamine	1.1	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	2.2	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	UJ	Yes
		_				
METHOD:	8270D (SI	M)				
Naphthalene	0.11	ug/l	1	-	U	Yes
,		-01.	-		-	

Analyte Name

Result Units Dilution Factor Lab Flag Validation Reportable

Sample ID: JC19023-4

Sample location: BMSMC Building 5 Area

Sampling date: 5/12/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chiorophenol	5.3	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	2.1	ug/l	1	-	U	Yes
2,4-Dichlorophenol	5.3	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.3	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.3	ug/l	1	-	U	Yes
2-Methylphenol	2.1	ug/l	1	-	U	Yes
3&4-Methylphenol	2.1	ug/l	1	-	U	Yes
2-Nitrophenol	5.3	ug/l	1	-	U	Yes
4-Nitrophenol	12	ug/l	1	-	U	Yes
Pentachlorophenol	5.3	ug/l	1	-	U	Yes
Phenol	2.1	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.3	ug/l	1		U	Yes
2,4,5-Trichlorophenol	5.3	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.3	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.1	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.1	ug/l	1	-	U	Yes
Benzaldehyde	5.3	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	2.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.1	ug/l	1	-	U	Yes
1,1'-Biphenyi	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.1	ug/l	1	-	U	Yes
4-Chloroaniline	5.3	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.1	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable	
bis(2-Chloroethoxy)methane	2.1	ug/l	1	-	U	Yes	
bis(2-Chloroethyl)ether	2.1	ug/l	1	-	U	Yes	
bis(2-Chloroisopropyl)ether	2.1	ug/l	1	-	U	Yes	
4-Chlorophenyl phenyl ether	2.1	ug/l	1	-	U	Yes	
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes	
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes	
3,3'-Dichlorobenzidine	2.1	ug/i	1	-	U	Yes	
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes	
Dibenzofuran	5.3	ug/l	1	-	U	Yes	
Di-n-butyl phthalate	2.1	ug/l	1	-	U	Yes	
Di-n-octyl phthalate	2.1	ug/l	1	-	U	Yes	
Diethyl phthalate	2.1	ug/l	1	-	U	Yes	
Dimethyl phthalate	2.1	ug/l	1	-	U	Yes	
bis(2-Ethylhexyl)phthalate	2.1	ug/l	1	-	UJ	Yes	
Fluoranthene	1.1	ug/l	1	-	U	Yes	
Fluorene	1.1	ug/l	1	-	U	Yes	
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes	
Hexachlorobutadiene	1.1	ug/l	1	-	IJ	Yes	
Hexachlorocyclopentadiene	12	ug/l	1	-	IJ	Yes	
Hexachloroethane	2.1	ug/l	1	-	U	Yes	
Indeno(1,2,3-cd)pyrene	1.1	⊲ ug/l	1	-	U	Yes	
Isophorone	2.1	ug/l	1	-	U	Yes	
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes	
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes	
2-Nitroaniline	5.3	ug/l	1	-	U	Yes	
3-Nitroaniline	5.3	ug/l	1	-	U	Yes	
4-Nitroaniline	5.3	ug/l	1	-	U	Yes	
Nitrobenzene	2.1	ug/l	1	V	υ	Yes	
N-Nitroso-di-n-propylamine	2.1	ug/l	1	-	U	Yes	
Nitrosodiphenylamine	5.3	ug/l	1	-	U	Yes	
Phenanthrene	1.1	ug/l	1	-	U	Yes	
Pyrene	1.1	ug/l	1	-	บ	Yes	
1,2,4,5-Tetrachlorobenzene	2.1	ug/l	1	-	UJ	Yes	
						*1	
= = -	= =						
METHOD:	•	*	_				
Naphthalene	0.11	ug/L	1	-	U	Yes	
1,4-Dioxane	3.21	ug/l	1	-	-	Yes	

Analyte Name

Result Units Dilution Factor Lab Flag Validation Reportable

Sample ID: JC19023-5

Sample location: BMSMC Building 5 Area

Sampling date: 5/13/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chiorophenoi	5.5	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.5	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.5	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.5	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.5	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	5.5	ug/l	1	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.5	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.5	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.5	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.5	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/i	1	-	U	Yes
4-Bromophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.5	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
bis(2-Chloroethyl)ether	2.2	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.2	ug/l	1	_	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	-	U	Yes
1,4-Dioxane	19.6	ug/l	1	-	-	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.5	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.2	ug/l	1	_	U	Yes
Diethyl phthalate	2.2	ug/l	1	-	U	Yes
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	U	Yes
Hexachlorobenzene	1.1	ug/l	1	-	Ų	Yes
Hexachlorobutadiene	1.1	ug/l	1	<u>.</u>	UJ	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.2	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes
Isophorone	2.2	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.5	ug/l	1	-	U	Yes
3-Nitroaniline	5.5	ug/l	1	-	U	Yes
4-Nitroaniline	5.5	ug/l	1	-	U	Yes
Nitrobenzene	2.2	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.5	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	UJ	Yes
4.2						
METHOD:	8270D (SI	M)				
Naphthalene	0.11	ug/L	1	-	U	Yes

Analyte Name

Result

Units Dilution Factor Lab Flag Validation Reportable

Sample ID: JC20184-6

Sample location: BMSMC Building 5 Area

Sampling date: 5/12/2016 Matrix: Groundwater

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.4	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.4	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.4	ug/l	1	-	U	Yes
2,4-Dinitrophenol	13	ug/i	1	-	U	Yes
4,6-Dinitro-o-cresol	5.4	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	22.0	ug/l	1	-	-	Yes
2-Nitrophenol	5.4	ug/l	1	-	U	Yes
4-Nitrophenol	13	ug/l	1	-	U	Yes
Pentachlorophenol	5.4	ug/l	1	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.4	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.4	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.4	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.4	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	7	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	ο.	U	Yes
4-Bromophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.4	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes

WILTHOU.	827UD					
Analyte Name	Result	Units (Dilution Factor	Lab Flag	Validation	Reportable
bis(2-Chloroethyl)ether	2.2	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.2	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.4	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	-	UJ	Yes
Di-n-octyl phthalate	2.2	ug/l	1	-	U	Yes
Diethyl phthalate	2.2	ug/l	1	-	U	Yes
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	U	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.3	ug/l	1	-	UJ	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.2	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes
Isophorone	2.2	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	- 1	U	Yes
2-Nitroaniline	5.4	ug/l	1	-	U	Yes
3-Nitroaniline	5.4	ug/l	1	-	U	Yes
4-Nitroaniline	5.4	ug/l	1	-	U	Yes
Nitrobenzene	2.2	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.4	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	UJ	Yes
METHOD:	8270D (SI	M)				
Naphthalene	0.11	ug/l	1	-	U	Yes
1,4-Dioxane	1.22	ug/l	1	-	-	Yes

Analyte Name

Sample ID: JC20184-3MS

Result Units Dilution Factor Lab Flag Validation Reportable

Sample location: BMSMC Building 5 Area

Sampling date: 5/12/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	32.4	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	39.3	ug/l	1	-	U	Yes
2,4-Dichlorophenol	45.8	ug/l	1	-	U	Yes
2,4-Dimethylphenol	41.1	ug/l	1	-	U	Yes
2,4-Dinitrophenol	94.8	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	41.1	ug/l	1	-	U	Yes
2-Methylphenol	30.7	ug/l	1	-	U	Yes
3&4-Methylphenol	30.3	ug/l	1	-	U	Yes
2-Nitrophenol	34.4	ug/l	1	-	U	Yes
4-Nitrophenol	28.4	ug/l	1	-	U	Yes
Pentachlorophenol	39.5	ug/l	1	-	U	Yes
Phenol	17.4	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	46.7	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	41.6	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	47.8	ug/l	1	-	U	Yes
Acenaphthene	38.3	ug/l	1	-	U	Yes
Acenaphthylene	35.2	ug/l	1	-	U	Yes
Acetophenone	32.5	ug/l	1	-	U	Yes
Anthracene **	36.3	ug/l	1	-	U	Yes
Atrazine	50.7	ug/l	1	-	U	Yes
Benzaldehyde	33.1	ug/l	1	,-	U	Yes
Benzo(a)anthracene	39.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	36.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	40.2	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	39.5	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	40.9	ug/l	1	•	U	Yes
4-Bromophenyl phenyl ether	46.4	ug/l	1	-	U	Yes
Butyl benzyl phthalate	33.2	ug/l	1	•	U	Yes
1,1'-Biphenyl	38.2	ug/l	1	-	U	Yes
2-Chloronaphthalene	38.1	ug/l	1	-	U	Yes
4-Chloroaniline	30.3	ug/l	1	-	U	Yes
Carbazole	39.9	ug/l	1	-	U	Yes
Caprolactam	12.1	ug/l	1	-	U	Yes
Chrysene	38.2	ug/l	1	_	U	Yes
bis(2-Chloroethoxy)methane	33.2	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	31.6	ug/i	1	-	U	Yes

Analista Nama	Danulk	I Imilan	Dilution Footon	tab Class	Maltalastaa	Danamahla
Analyte Name	Result		Dilution Factor	Lab Flag		•
bis(2-Chloroisopropyl)ether	30.1	ug/l	1	•	U	Yes
4-Chlorophenyl phenyl ether	46.7	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	41.7	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	41.7	ug/l	W 1	-	U	Yes
3,3'-Dichlorobenzidine	60.1	ug/l	1	-	U	Yes
1,4-Dioxane	55.5	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	41.1	ug/l	1	-	U	Yes
Dibenzofuran	40.7	ug/l	1	-	U	Yes
Di-n-butyl phthalate	39.7	ug/l	1	-	U	Yes
Di-n-octyl phthalate	31.8	ug/l	1	-	U	Yes
Diethyl phthalate	42.0	ug/l	1	-	U	Yes
Dimethyl phthalate	42.8	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	32.9	ug/l	1	-	U	Yes
Fluoranthene	44.1	ug/l	1	-	U	Yes
Fluorene	40.2	ug/l	1	-	U	Yes
Hexachlorobenzene	45.5	ug/l	1	-	U	Yes
Hexachlorobutadiene	41.9	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	41.7	ug/l	1	-	U	Yes
Hexachloroethane	38.0	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	39.5	ug/l	1	-	U	Yes
Isophorone	34.7	ug/l	1	-	U	Yes
1-Methylnaphthalene	37.7	ug/l	1	-	U	Yes
2-Methylnaphthalene	37.9	ug/l	1	-	U	Yes
2-Nitroaniline	38.6	ug/l	1	-	U	Yes
3-Nitroaniline	32.8	ug/l	1	-	U	Yes
4-Nitroaniline	40.0	ug/l	1	(C =	U	Yes
Nitrobenzene	34.4	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	29.4	ug/l	1	-	U	Yes
N-Nitrosodiphenylamine	36.9	ug/l	1	-	U	Yes
Phenanthrene	38.4	ug/l	1	-	U	Yes
Pyrene	40.4	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	50.1	ug/l	1	-	IJ	Yes
METHOD: 8	3270D (SI	M)				
Naphthalene	1.41	ug/l	1	-	U	Yes
1,4-Dioxane	7.37	ug/l	1	-	U	Yes
		_				

Analyte Name

Result Units Dilution Factor Lab Flag Validation Reportable

Sample ID: JC20184-3

Sample location: BMSMC Building 5 Area

Sampling date: 5/12/2016

Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	34.2	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	36.7	ug/l	1	-	U	Yes
2,4-Dichlorophenol	43.8	ug/l	1	-	U	Yes
2,4-Dimethylphenol	40.6	ug/l	1	-	U	Yes
2,4-Dinitrophenol	84.9	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	38.5	ug/l	1	-	U	Yes
2-Methylphenol	31.4	ug/l	1	-	U	Yes
3&4-Methylphenol	29.7	ug/l	1	-	U	Yes
2-Nitrophenol	35.7	ug/l	1	-	U	Yes
4-Nitrophenol	27.3	ug/l	1	-	U	Yes
Pentachlorophenol	33.5	ug/l	1	-	U	Yes
Phenol	17.1	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	41.5	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	38.9	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	43.4	ug/l	1	-	U	Yes
Acenaphthene	38.5	ug/l	1	-	U	Yes
Acenaphthylene	35.3	ug/l	1	-	U	Yes
Acetophenone	34.5	ug/l	1	-	U	Yes
Anthracene	34.4	ug/l	1	-	U	Yes
Atrazine	49.0	ug/l	1	-	U	Yes
Benzaldehyde	35.6	ug/l	1	,-	U	Yes
Benzo(a)anthracene	34.7	ug/l	1	-	U	Yes
Benzo(a)pyrene	32.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	36.0	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	35.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	35.8	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	44.4	ug/l	1	-	U	Yes
Butyl benzyl phthalate	31.0	ug/l	1	-	U	Yes
1,1'-Biphenyi	38.7	ug/l	1	-	U	Yes
2-Chloronaphthalene	39.1	ug/l	1	-	U	Yes
4-Chloroaniline	30.9	ug/l	1	-	U	Yes
Carbazole	37.2	ug/l	1	-	U	Yes
Caprolactam	11.9	ug/l	1 :	-	U	ਂ Yes
Chrysene	35.7	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	36.0	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	36.7	ug/l	1	-	U	Yes

Analyte Name	Result	Units (Dilution Factor	Lab Flag	Validation	Reportable
bis(2-Chloroisopropyl)ether	31.4	ug/l	1	-	U ,	Yes
4-Chlorophenyl phenyl ether	44.1	ug/l	1	-	Ų	Yes
2,4-Dinitrotoluene	38.9	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	39.5	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	57.6	ug/l	1	-	U	Yes
1,4-Dioxane	56.7	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	36.3	ug/l	1	-	U	Yes
Dibenzofuran	39.8	ug/l	1	÷.	U	Yes
Di-n-butyl phthalate	36.1	ug/l	1	-	U	Yes
Di-n-octyl phthalate	28.9	ug/l	1	-	U	Yes
Diethyl phthalate	40.1	ug/l	1	-	U	Yes
Dimethyl phthalate	40.0	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	30.7	ug/l	1	-	U	Yes
Fluoranthene	40.8	ug/l	1	-	U	Yes
Fluorene	38.5	ug/l	1	-	U	Yes
Hexachlorobenzene	43.2	ug/l	1	-	U	Yes
Hexachlorobutadiene	45.8	ug/l	1	*	U	Yes
Hexachlorocyclopentadiene	46.3	ug/l	1	-	U	Yes
Hexachloroethane	40.7	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	33.5	ug/l	1 *	_	U	Yes
Isophorone	38.0	ug/l	1	-	U	Yes
1-Methylnaphthalene	40.8	ug/l	1	-	U	Yes
2-Methylnaphthalene	39.7	ug/l	1	-	U	Yes
2-Nitroaniline	36.7	ug/l	1	-	U	Yes
3-Nitroaniline	31.1	ug/l	1	-	U	Yes
4-Nitroaniline	35.1	ug/l	1	-	U	Yes
Nitrobenzene	38.1	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	30.1	ug/l	1	-	U	Yes
N-Nitrosodiphenylamine	34.7	ug/l	1	-	U	Yes
Phenanthrene	35.8	ug/l	1	-	U	Yes
Pyrene	37.0	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	50.9	ug/l	1	-	UJ	Yes
)(c				
		1				
METHOD:		-				
Naphthalene	1.22	ug/l	1	-	-	Yes
1,4-Dioxane	7.40	ug/l	1	-	-	Yes

	Project Number:_JC20184 Date:May_11-12,_2016
	Shipping Date: May 12, 2016 EPA Region: 2
REVIEW OF SEMIVOLATILE OR	GANIC PACKAGE
The following guidelines for evaluating volatile required validation actions. This document will assigned judgment to make more informed decision and in users. The sample results were assessed according documents in the following order of precedent Section, SOP HW-35A, July 2015 –Revision 0. Seminary and data validation actions listed on the data reviguidance document, unless otherwise noted.	sist the reviewer in using professional better serving the needs of the data g to USEPA data validation guidance se: EPA Hazardous Waste Support platile Data Validation. The QC criteria
The hardcopied (laboratory name) _Accutest	data package received has been summarized. The data review for SVOCs
Lab. Project/SDG No.:JC20184No. of Samples:8_Full_scan/8_SIM	Sample matrix:Groundwater
Trip blank No.:	
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Overall Comments:_ABN_TCL_list_by_method_SW846-8270D_(SIM)	3270D;_Naphthalene_and_1,4-Dioxane_
Definition of Qualifiers:	
J- Estimated results U- Compound not detected R- Rejected/data/ UJ- Estimated nondetect Reviewer:	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
D _i		
		<u> </u>
		= -
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
	to .	

All criteria were met _X	
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE	DATE	рН	ACTION			
	SAMPLED	EXTRACTED/ANALYZED					
All samples extracted and analyzed within method recommended holding time. Sample preservation was acceptable.							

Cooler temperature (Criteria: 4 + 2 °C); 3.8°C
--

Actions

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

			Ac	tion	
Matrix	Matrix Preserved Criteria		Detected Associated Compounds	Non-Detected Associated Compounds	
	No	≤7 days (for extraction) ≤40 days (for analysis)	Use professi	onal judgment	
	No	> 7 days (for extraction) > 40 days (for analysis)	J	Use professional judgment	
Aqueous Yes		≤ 7 days (for extraction) ≤ 40 days (for analysis)	≤7 days (for extraction) No qualifier		
_	Yes	> 7 days (for extraction) > 40 days (for analysis)	J	U.I	
	Yes/No	Grossly Exceeded	j	UJ or R	
	No	≤ 14 days (for extraction) ≤ 40 days (for analysis)	Use profession	onal judgment	
Non-Aqueous	No	> 14 days (for extraction) > 40 days (for analysis)	J	Use professional judgment	
	Yes	≤ 14 days (for extraction) ≤ 40 days (for analysis)	No qualification		
	Yes	> 14 days (for extraction) > 40 days (for analysis)	J	UJ	
	Yes/No	Grossly Exceeded	J	UJ or R	

All criteria were metX
Criteria were not met see below

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

_X__ The DFTPP performance results were reviewed and found to be within the specified criteria.

_X__ DFTPP tuning was performed for every 12 hours of sample analysis.

If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.

Notes: These requirements do not apply when samples are analyzed by the Selected Ion Monitoring (SIM) technique.

All mass spectrometer conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortion are unacceptable

Notes: No data should be qualified based of DFTPP failure.

The requirement to analyze the instrument performance check solution is optional when analysis of PAHs/pentachlorophenol is to be performed by the SIM technique.

List	the	samples	affected:
-			-
		7036 - 0	- 87327

Actions:

- 1. If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable (R).
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- 3. State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements.
- 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds.

All criteria were metX
Criteria were not met
and/or see below

INITIAL CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

)4/21/2016_(SIM)
GCMS3M
\queous/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
Initial	and init	ial calib		ts the method and guidnance criteria.	dance validation document

Actions:

Qualify the initial calibration analytes listed in Table 2 using the following criteria:

Table 3. Initial Calibration Actions for Semivolatile Analysis

	Action		
Criteria	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	UJ	
RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J+ or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%RSD > Maximum %RSD in Table 2 for target analyte	J	Use professional judgment	
%RSD ≤ Maximum %RSD in Table 2 for target analyte	No qualification	No qualification	

Initial Calibration

Table 2. RRF, %RSD, and %D Acceptance Criteria in Initial Calibration and CCV for Semivolatile Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
1,4-Dioxane	0.010	40.0	= 40.0	= 50.0
Benzaldehyde	0,100	40,0	± 40.0	= 50.0
Phenol	0.080	20.0	€20.0	= 25.0
Bis(2-chloroethyl)ether	0.100	20.0	±20.0	± 25.0
2-Chlorophenol	0.200	20.0	±20.0	=25.0
2-Methylphenol	0.010	20.0	± 20.0	±25.0
3-Methylphenol	0.010	20.0	±20.0	±25.0
2,2'-Oxybis-(1-chloropropane)	0.010	20.0	= 25.0	= 50.0
Acetophenone	0.060	20.0	±20.0	±25.0
4-Methylphenol	0.010	20.0	£20.0	= 25.0
N-Nitroso-di-n-propylamine	0.080	20.0	±25.0	±25.0
Hexachloroethane	0.100	20.0	± 20.0	± 25.0
Nitrobenzene	0.090	20.0	± 20.0	±25.0
Isophorone	0.100	20.0	± 20.0	= 25.0
2-Nitrophenol	0.060	20.0	± 20.0	= 25.0
2,4-Dimethylphenol	0.050	20.0	±25.0	± 50.0
Bis(2-chloroethoxy)methane	0.080	20.0	=20.0	= 25.0
2,4-Dichlorophenol	0.060	20.0	± 20.0	±25.0
Naphthalene	0.200	20,0	-20.0	±25.0
4-Chloroaniline	0.010	40.0	= 40.0	±50.0
llexachlorobutadiene	0.040	20.0	±20.0	= 25.0
Caprolactam	0.010	40.0	± 30.0	± 50.0
4-Chloro-3-methylphenol	0.040	20.0	± 20.0	±25.0
2-Methylnaphthalene	0.100	20.0	= 20.0	=25.0
lexachlorocyclopentadiene	0.010	40.0	± 40.0	= 50.0
2,4,6-Trichlorophenol	0.090	20.0	= 20.0	= 25.0
2,4,5-Trichlorophenol	0.100	20.0	± 20.0	= 25.0
I, I'-Biphenyl	0.200	20.0	± 20.0	= 25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D
2-Chloronaphthalene	0.300	20.0	= 20.0	±25.0
2-Nitroaniline	0.060	20.0	±25.0	±25.0
Dimethylphthalate	0.300	20.0	±25.0	± 25.0
2,6-Dinitrotoluene	0.080	20.0	±20.0	± 25.0
Acenaphthylene	0.400	20.0	±20.0	±25.0
3-Nitroaniline	0.010	20.0	± 25.0	± 50.0
Acenaphthene	0,200	20.0	± 20.0	± 25.0
2,4-Dinitrophenol	0.010	40.0	- 50.0	±50.0
4-Nitrophenol	0.010	40.0	± 40.0	±50.0
Dibenzofuran	0.300	20.0	±20.0	± 25.0
2,4-Dinitrotoluene	0.070	20.0	±20.0	±25.0
Diethylphthalate	0.300	20.0	± 20.0	±25.0
1,2,4,5-Tetrachlorobenzene	0.100	20.0	±20.0	£25.0
4-Chlorophenyl-phenylether	0.100	20.0	= 20.0	±25.0
Fluorene	0.200	20.0	±20.0	±25.0
4-Nitroaniline	0.010	40.0	±40.0	± 50.0
4,6-Dinitro-2-methylphenol	0.010	40.0	±30.0	± 50.0
4-Bromophenyl-phenyl ether	0.070	20.0	± 20.0	±25.0
N-Nitrosodiphenylamine	0.100	20.0	±20.0	±25.0
Hexachlorobenzene	0.050	20.0	±20.0	±25.0
Atrazine	0.010	40.0	± 25.0	± 50.0
Pentachlorophenol	0.010	40.0	± 40.0	± 50.0
Phenanthrene	0.200	20.0	±20.0	±25.0
Anthracene	0.200	20.0	±20.0	± 25.0
Carbazole	0.050	20.0	±20.0	± 25.0
Di-n-butylphthalate	0.500	20,0	± 20.0	£25.0
Fluoranthene	0.100	20.0	± 20.0	± 25.0
Pyrene	0.400	20.0	±25.0	± 50.0
Butylbenzylphthalate	0.100	20.0	= 25.0	±50.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D¹
3,3'-Dichlorobenzidine	0.010	40.0	± 40.0	± 50.0
Benzo(a)anthracene	0.300	20.0	±20.0	± 25.0
Chrysene	0.200	20.0	± 20.0	± 50.0
Bis(2-ethylhexyl) phthalate	0.200	20.0	± 25.0	± 50.0
Di-n-octy/lphthalate	0.010	40.0	= 40.0	= 50.0
Benzo(b)fluoranthene	0.010	20.0	± 25.0	± 50.0
Benzo(k)/Iuoranthene	0.010	20.0	± 25.0	= 50.0
Benzo(a)pyrene	0.010	20.0	± 20.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.010	20.0	± 25.0	± 50.0
Dibenzo(a,h)anthracene	0.010	20,0	±25.0	± 50.0
Benzo(g,h,i)perylene	0.010	20.0	±30.0	= 50.0
2,3,4,6-Tetrachlorophenol	0.040	20.0	± 20.0	± 50.0
Naphthalene	0.600	20.0	±25.0	± 25.0
2-Methylnaphthalene	0.300	20.0	±20.0	± 25.0
Acenaphthylene	0.900	20.0	± 20.0	± 25.0
Acenaphthene	0.500	20.0	± 20.0	± 25.0
Fluorene	0.700	20.0	± 25.0	± 50.0
Phenanthrene	0.300	20.0	±25.0	± 50.0
Anthracene	0.400	20.0	±25.0	± 50.0
Fluoranthene	0.400	20.0	±25.0	± 50.0
Pyrene	0.500	20.0	±30.0	± 50.0
Benzo(a)anthracene	0,400	20.0	±25.0	± 50.0
Chyrsene	0,400	20.0	± 25.0	± 50.0
Benzo(b)fluoranthene	0,100	20.0	±30.0	± 50.0
Benzo(k)fluoranthene	0.100	20.0	± 30.0	± 50.0
Benzo(a)pyrene	0.100	20.0	± 25.0	= 50.0
Indeno(1,2,3-cd)pyrene	0.100	20.0	=40.0	±50.0
Dibenzo(a,h)anthracene	0.010	25.0	± 40.0	± 50.0
Benzo(g,h,i)perylene	0.020	25.0	± 40.0	± 50.0

Pentachlorophenol	0.010	40.0	±50.0	± 50.0
Deuterated Monitoring Compou	nds			

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum %D
1,4-Dioxane-d _x	0.010	20.0	±25.0	± 50.0
Phenol-ds	0.010	20.0	= 25.0	±25.0
Bis-(2-chloroethyl)ether-da	0.100	20.0	±20.0	±25.0
2-Chlorophenol-d ₄	0.200	20.0	± 20,0	±25.0
4-Methylphenol-d ₈	0.010	20.0	= 20.0	±25.0
4-Chloroaniline-d4	0.010	40.0	± 40.0	± 50.0
Nitrobenzene-d ₅	0.050	20.0	±20.0	± 25.0
2-Nitrophenol-d4	0.050	20.0	= 20.0	± 25.0
2,4-Dichlorophenol-d	0,060	20.0	± 20.0	± 25.0
Dimethylphthalate-d ₆	0.300	20.0	± 20.0	± 25.0
Acenaphthylene-d _x	0.400	20.0	± 20.0	±25.0
4-Nitrophenol-d ₄	0.010	40.0	± 40.0	± 50.0
Fluorene-d ₁₀	0.100	20.0	=20.0	±25.0
4,6-Dinitro-2-methylphenol-d	0.010	40.0	± 30.0	± 50.0
Anthracene-d ₁₀	0.300	20.0	= 20.0	±25.0
Pyrene-d ₁₀	0.300	20.0	=25.0	± 50.0
Benzo(a)pyrene-d ₁₂	0.010	20.0	= 20.0	± 50.0
Fluoranthene-d ₁₀ (SIM)	0,400	20.0	±25.0	± 50.0
2-Methylnaphthalene-d ₁₀ (SIM)	0.300	20.0	±20.0	± 25.0

If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

All criteria were met
Criteria were not met
and/or see belowX

CONTINUING CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:04/2	26/16;_04/27/16_(Scan)			
Date of initial calibration verification (I	CV):04/26-27/16;_04/27/16			
Date of continuing calibration verification	ion (CCV):05/14/16;_05/16/16			
Date of closing CCV:				
Instrument ID numbers:				
Matrix/Level:A	queous/low			
Date of initial calibration:04	121/16 (CIM)			
Date of initial calibration verification (ICV):04/21/16				
Date of continuing calibration verification	ion (CCV):05/13/16			
Date of closing CCV:	<u> </u>			
Instrument ID numbers:	GCMS3M			
Matrix/Level:	Aqueous/low			

DATE	LAB FIL	E CRITERIA OUT	COMPOUND	SAMPLES	
	ID#	RFs, %RSD, <u>%D</u> , r		AFFECTED	
GCMS3E					
05/14/16	cc3623-2	5 -30.4	Hexachlorobutadiene	JC20184-1 to -6	
05/14/16	cc3621-2	5 -27.7	1,2,4,5-tetrachlorobenzene		
05/1616	cc-3623-	0 -36.1	Nitrobenzene	JC20184-1	
		-35.1	Hexachlorobutadiene]	
		-22.0	4-Nitrophenol*		
		69.9	Pentachlorophenol		

Note: Initial and continuing calibration verifications meet the method and guidance document required performance criteria except the cases describe in the list enclosed. Results qualified as estimated (J), (UJ) for non-detects.

No closing calibration verification included in data package. No action taken, professional judgment.

* Analytes with % difference in the continue calibration verification outside the method performance criteria but within the validation guidelines criteria, +30 %. No action taken.

QC samples analyzed in instruments GCMS3E; GCMS4M (SIM) and GCMS5P (Scan). Analytes not meeting continue calibration verification criteria not qualified.

Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Table 4. CCV Actions for Semivolatile Analysis

Crituria for Oranius COV		Action	
Criteria for Opening CCV	Criteria for Closing CCV -	Detect	Non-detect
CCV not performed at required frequency and sequence	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J or R	R
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table 2 for target analyte	ı	Ωĵ
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table 2 for target analyte	No qualification	No qualification

All criteria were met _	_X
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL! COMPOUND MATRIX		CONCENTRATION UNITS
_No_target_ana	alytes_detected	_in_method_bla	anks.	
	-			
Field/Equipmen	t/Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_field/trip/ed	quipment_blank	s_analyzed_wit	th_this_data_package	
	1001			

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

Blank Type	Blank Result	Sample Result	Action
	Detect	Non-detect	No qualification
	< CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
		≥ CRQL	Use professional judgment
Method,	≥CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
		≥ CRQL but < Blank Result	Report at sample results and qualify as non-detect (U) or as unusable (R)
TCLP/SPLP LEB, Field		≥ CRQL and≥ Blank Result	Use professional judgment
	Grossly high	Detect	Report at sample results and qualify as unusable (R)
	TIC > 5.0 ug/L (water) or 0.0050 mg/L (TCLP leachate) or TIC > 170 ug/Kg (soil)	Detect	Use professional judgment

List samples qualified

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
				<u> </u>	
			<u> </u>		
-					
	<u> </u>				
		(

All criteria were met _X
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES - DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6.

The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

Table 7. DMC Actions for Semivolatile Analysis

Criteria	Action		
	Detect	Non-detect	
%R < 10% (excluding DMCs with 10% as a lower acceptance limit)	J-	R	
10% ≤ %R (excluding DMCs with 10% as a lower acceptance limit) < Lower Acceptance Limit	J-E	Ú	
Lower Acceptance limit ≤%R ≤ Upper Acceptance Limit	No qualification	No qualification	
%R > Upper Acceptance Limit	1+	No qualification	

List the percent recoveries (%Rs) which do not meet the criteria for DMCs (surrogate) recovery.

Matrix:___Groundwater_____

SAMPLE ID SURROGATE COMPOUND ACTION

_DMCs_meet_the_required_criteria._Non-deuterated_surrogates_added_to_the_samples_were__
_within_laboratory_recovery_limits._____

Table 8. Semivolatile DMCs and the Associated Target Analytes

	The state of the resociated ta	
1,4-Dioxane-d ₈ (DMC-1)	Phenol-d ₅ (DMC-2)	Bis(2-Chloroethyl) ether-d ₈
		(DMC-3)
1,4-Dioxane	Benzaldehyde	Bis(2-chloroethyl)ether
12	Phenol	2,2'-Oxybis(1-chloropropane)
		Bis(2-chloroethoxy)methane
2-Chlorophenol-d ₄ (DMC-4)	4-Methylphenol-da (DMC-5)	4-Chloroaniline-d4 (DMC-6)
2-Chlorophenol	2-Methylphenol	4-Chloroanitine
	3-Methylphenol	Hexachlorocyclopentadiene
	4-Methylphenol	Dichlorobenzidine
	2,4-Dimethylphenol	
Nitrobenzene-d5(DMC-7)	2-Nitrophenol-d4 (DMC-8)	2,4-Dichlorophenol-d3(DMC-9)
Acetophenone	Isophorone	2,4-Dichlorophenol
N-Nitroso-di-n-propylamine	2-Nitrophenol	Hexachlorobutadiene
Hexachloroethane		Hexachlorocyclopentadiene
Nitrobenzene		4-Chloro-3-methylphenol
2,6-Dinitrotoluene	20	2,4,6-Trichlorophenol
2,4-Dinitrotoluene		2,4,5-Trichlorophenol
N-Nitrosodiphenylamine		1,2,4,5-Tetrachlorobenzene
		*Pentachlorophenol
	29	2,3,4,6-Tetrachlorophenol
Dimethylphthalate-d. (DMC-10)	Acenaphthylene-da (DMC-11)	4-Nitrophenol-d ₄ (DMC-12)
Caprolactam	*Naphthalene	2-Nitroaniline
1,1'-Biphenyl	*2-Methylnaphthalene	3-Nitroaniline
Dimethylphthalate	2-Chloronaphthalene	2,4-Dinitrophenol
Diethylphthalate	*Acenaphthylene	4-Nitrophenol
Di-n-butylphthalate	*Acenaphthene	4-Nitroaniline
Butylbenzylphthalate		
Bis(2-ethylhexyl) phthalate		
Di-n-octylphthalate		
гл-н-остутришатате		

Fluorene-d ₁₀ (DMC-13)	4,6-Dinitro-2-methylphenol-d ₂ (DMC-14)	Anthracene-d ₁₀ (DMC-15)
Dibenzofuran *Fluorene 4-Chlorophenyl-phenylether 4-Bromophenyl-phenylether Carbazole	4,6-Dinitro-2-methylphenol	Hexachlorobenzene Atrazine *Phenanthrene *Anthracene
Pyrene-d ₁₀ (DMC-16)	Benzo(a)pyrene-d ₁₂ (DMC-17)	
*Fluoranthene	3,3'-Dichlorobenzidine	
*Pyrene	*Benzo(b)fluoranthene	
*Benzo(a)anthracene	*Benzo(k)fluoranthene	1
*Chrysene	*Benzo(a)pyrene	
	*Indeno(1,2,3-cd)pyrene	
	*Dibenzo(a,h)anthracene	
	*Benzo(g,h,i)perylene	

^{*}Included in optional Target Analyte List (TAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

Fluoranthene-d10 (DMC-1)	2-Methylnaphthalene-d10 (DMC-2)
Fluoranthene	Naphthalene
Pyrene	2-Methylnaphthalene
Benzo(a)anthracene	Acenaphthylene
Chrysene	Acenaphthene
Benzo(b)fluoranthene	Fluorene
Benzo(k)fluoranthene	Pentachlorophenol
Benzo(a)pyrene	Phenanthrene
Indeno(1,2,3-ed)pyrene	Anthracene
Dibenzo(a,h)anthracene	
Benzo(g,h,i)perylene	

All criteria were met _X
Criteria were not met
and/or see below

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

NOTES:

Data for MS and MSDs will not be present unless requested by the

Region.

Notify the Contract Laboratory COR if a field or trip blank was used for the

MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC20184-3 Sample ID:JC20184-3_(SIM)				Matrix/Level:Groundwate Matrix/Level:Groundwate		
MS OR MSD _JC120184-3M\$	COMPOUND S/MSD_(SIM)	% R	RPD	QC LIMITS	ACTION	
_MS/MSD	1,4-Dioxane	0/0_9	%	20160	No_action	
Note:	No action taken, high	sample c	oncentra	tion compared to	amount spiked.	

QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

If QC limits are not available, use limits of 70 – 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were metX
Criteria were not met
and/or see below

INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal standard area counts outside control limits in QC samples, no action taken. Internal area meets the required criteria of batch samples corresponding to this data package.

Action:

- 1. If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - Qualify non-detected associated compounds as unusable (R).
- If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 200% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

Criteria	Action		
Criteria	Detect	Non-detect	
Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL	J+	R	
20% ≤ Area response ≤ 50% of the opening CCV or mid-point standard CS3 from ICAL	J+	UJ	
50% ≤ Area response ≤ 200% of the opening CCV or mid-point standard CS3 from ICAL	No qualification	No qualification	
Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL	J-	No qualification	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds	R	R	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds	No qualification	No qualification	

		All criteria were metX Criteria were not met and/or see below	
TARGET CO	MPOUND IDENTIFICATION		
Criteria:			
	ve Retention Times (RRTs) of reported com T [opening Continuing Calibration Verification ion].	· ·	
List compour	nds not meeting the criteria described above:		
Sample ID	Compounds	Actions	
-	m the associated calibration standard (opening must match according to the following criteria: All ions present in the standard mass spect 10% must be present in the sample spectror. The relative intensities of these ions matched and sample spectra (e.g., for an attendard spectrum, the corresponding sa 30-70%). Ions present at greater than 10% in the satthe standard spectrum, must be evaluated spectral interpretation.	ctrum at a relative intensity greater that um. nust agree within ±20% between the ion with an abundance of 50% in the ion abundance must be between the ion abundance must be b	an ne ne en
List compour	nds not meeting the criteria described above:		
Sample ID	Compounds	Actions	
ldentified_c	ompounds_meet_the_required_criteria		

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

	-	_
ist	- 1	lCs
151	- 1	18. 45

Sample ID	Compound	Sample ID	Compound

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).

- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were metX
Criteria were not met
and/or see below

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 5. Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

Criteria	Action		
Detects		Non-detects	
%Solids < 10.0%	Use professional judgment	Use professional judgment	
10.0% ≤ %Solids ≤ 30.0%	Use professional judgment	Use professional judgment	
%Solids > 30.0%	No qualification	No qualification	

SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
JC20184-1	10 X	1,4-Dixane concentration over calibration range
12		
	·	

		F2	All criteria were metN/A Criteria were not met and/or see below
FIELD DUPLICATE PR	RECISION		
Sample IDs:		Matrix:_	<u>-</u>
Sample IDs:		_ Matrix:_	

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: if large RPD (> 50 %) is observed, confirm identification of the samples and note differences. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
No field/laborator	v duplical	e analyzed as	part of this data p	package, MS	//MSD % and blank
	duplicate	recoveries RP	D used to assess pr		

All criteria were metX
Criteria were not met
and/or see below

OTHER ISSUES

List sai	mples qualified ba	ased on the degradation of system	performance during simple analysis:	
Sample	e ID	Comments	Actions	
				_
	-			_
Action:				
Use pr degrad	ofessional judgm ed during sample	• •	termined that system performance haboratory Program COR any action as any affected the data.	
degrad	ofessional judgm ed during sample	e analyses. Inform the Contract La system performance which signific	aboratory Program COR any action as	
Use pr degrad result o	rofessional judgm led during sample of degradation of s Overall Assessm	e analyses. Inform the Contract La system performance which signific	aboratory Program COR any action as	

Action:

- Use professional judgment to determine if there is any need to qualify data which were not 1. qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).
- 3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported:
 - The analysis with the lower CRQL
 - The analysis with the better QC results
 - The analysis with the higher results

а

EXECUTIVE NARRATIVE

SDG No:

JC20184

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8081B

Number of Samples:

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Eight (8) samples were analyzed for selected pesticides following method SW846-8081B. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence *Hazardous Waste Support Section SOP No. HW-36A, Revision O, June, 2015. SOM02.2. Pesticide Data Validation.* The QC criteria and data validation actions listed on the data review worksheets are from the primary

guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

None

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

May 25, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC20184-1

Sample location: BMSMC Building 5 Area

Sampling date: 11-May-16 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.012	ug/L	1	-	U	Yes
alpha-BHC	0.012	ug/L	1	-	Ų	Yes
beta-BHC	0.012	ug/L	1	-	U	Yes
delta-BHC	0.012	ug/L	1	-	บ	Yes
gamma-BHC (Lindane)	0.012	ug/L	1	-	U	Yes
alpha-Chlordane	0.012	ug/L	1	-	U	Yes
gamma-Chlordane	0.012	ug/L	1	-	U	Yes
Dieldrin	0.012	ug/L	1	-	U	Yes
4,4'-DDD	0.012	ug/L	1	-	U	Yes
4,4'-DDE	0.012	ug/L	1	-	U	Yes
4,4'-DDT	0.012	ug/L	1	-	U	Yes
Endrin	0.012	ug/L	1	-	U	Yes
Endosulfan sulfate	0.012	ug/L	1	2	U	Yes
Endrin aldehyde	0.012	ug/L	1	-	U	Yes
Endrin ketone	0.012	ug/L	1	-	U	Yes
Endosulfan-I	0.012	ug/L	1	-	U	Yes
Endosulfan-II	0.012	ug/L	1	-	U	Yes
Heptachlor	0.012	ug/L	1	-	U	Yes
Heptachlor epoxide	0.012	ug/L	1	-	U	Yes
Methoxychlor	0.023	ug/L	1	ee -	UJ	Yes
Toxaphene	0.29	ug/L	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 11-May-16 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.012	ug/l	1	-	U	Yes
alpha-BHC	0.012	ug/l	1	-	U	Yes
beta-BHC	0.012	ug/l	1	-	U	Yes
delta-BHC	0.012	ug/l	1	•	U	Yes
gamma-BHC (Lindane)	0.012	ug/l	1	-	U	Yes
alpha-Chlordane	0.012	ug/l	1	-	U	Yes
gamma-Chlordane	0.012	ug/l	1	-	Ų	Yes
Dieldrin	0.012	ug/l	1	-	U	Yes
4,4'-DDD	0.012	ug/l	1	-	U	Yes
4,4'-DDE	0.012	ug/l	1	-	U	Yes
4,4'-DDT	0.012	ug/l	1	-	U	Yes
Endrin	0.012	ug/l	1	•	U	Yes
Endosulfan sulfate	0.012	ug/l	1	-	U	Yes
Endrin aldehyde	0.012	ug/l	1	-	U	Yes
Endrin ketone	0.012	ug/l	1	•	U	Yes
Endosulfan-l	0.012	ug/l	1	-	U	Yes
Endosulfan-II	0.012	ug/l	1	-	U	Yes
Heptachlor	0.012	ug/l	1	-	U	Yes
Heptachlor epoxide	0.012	ug/l	1	•	U	Yes
Methoxychlor	0.024	ug/l	1	•	U	Yes
Toxaphene	0.29	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12-May-16 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.012	ug/l	1	-	U	Yes
alpha-BHC	0.012	ug/l	1	-	U	Yes
beta-BHC	0.012	ug/l	1	-	U	Yes
delta-BHC	0.012	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.012	ug/l	1	-	U	Yes
alpha-Chlordane	0.012	ug/l	1	-	U	Yes
gamma-Chlordane	0.012	ug/l	1	-	U	Yes
Dieldrin	0.012	ug/l	1	-	U	Yes
4,4'-DDD	0.012	ug/l	1	-	U	Yes
4,4'-DDE	0.012	ug/l	1	-	U	Yes
4,4'-DDT	0.012	ug/l	1	-	U	Yes
Endrin	0.012	ug/l	1	-	U	Yes
Endosulfan sulfate	0.012	ug/l	1	-	U	Yes
Endrin aldehyde	0.012	ug/l	1	-	U	Yes
Endrin ketone	0.012	ug/l	1	-	U	Yes
Endosulfan-i	0.012	ug/l	1	-	U	Yes
Endosulfan-II	0.012	ug/l	1	-	U	Yes
Heptachior	0.012	ug/l	1	-	U	Yes
Heptachlor epoxide	0.012	ug/l	1	-	U	Yes
Methoxychlor	0.024	ug/l	1	-	U	Yes
Toxaphene	0.29	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12-May-16 Matrix: Groundwater

Analyte Name	Resu	lt Units	Dilution Fac	tor Lab Flag	Validation	Reportable
Aldrin	0.32	ug/l	1	-	U	Yes
alpha-BHC	0.31	ug/l	1	-	U	Yes
beta-BHC	0.33	ug/l	1 :::	-	U	Yes
delta-BHC	0.31	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.32	ug/l	1	-	U	Yes
alpha-Chlordane	0.35	ug/l	1	-	U	Yes
gamma-Chlordane	0.32	ug/l	1	-	U	Yes
Dieldrin	0.33	ug/l	1	-	U	Yes
4,4'-DDD	0.33	ug/l	1	-	U	Yes
4,4'-DDE	0.32	ug/l	1	-	U	Yes
4,4'-DDT	0.31	ug/l	1	-	U	Yes
Endrin	0.34	ug/l	1	-	U	Yes
Endosulfan sulfate	0.29	ug/l	1	-	U	Yes
Endrin aldehyde	0.33	ug/l	1	-	U	Yes
Endrin ketone	0.31	ug/l	1	-	U	Yes
Endosulfan-l	0.32	ug/l	1	-	Ų	Yes
Endosulfan-II	0.32	ug/l	1	-	U	Yes
Heptachlor	0.31	ug/l	1	-	U	Yes
Heptachlor epoxide	0.33	ug/l	1	27	U	Yes
Methoxychlor	0.31	ug/l	1	(+)	U	Yes
Toxaphene	7 ND					

Sample location: BMSMC Building 5 Area

Sampling date: 12-May-16 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.32	ug/l	1	-	U	Yes
alpha-BHC	0.31	ug/l	1	•	U	Yes
beta-BHC	0.35	ug/l	1	-	U	Yes
delta-BHC	0.32	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.32	ug/l	1	-	U	Yes
alpha-Chlordane	0.37	ug/l	1	-	U	Yes
gamma-Chlordane	0.33	ug/l	1		U	Yes
Dieldrin	0.34	ug/l	1	-	U	Yes
4,4'-DDD	0.34	ug/l	1	•	U	Yes
4,4'-DDE	0.33	ug/l	1	-	U	Yes
4,4'-DDT	0.31	ug/l	1	-	U	Yes
Endrin	0.35	ug/l	1		U	Yes
Endosulfan sulfate	0.31	ug/l	1	•	U	Yes
Endrin aldehyde	0.34	ug/l	1	-	U	Yes
Endrin ketone	0.32	ug/l	1	-	U	Yes
Endosulfan-I	0.33	ug/l	1	-	U	Yes
Endosulfan-II	0.34	ug/l	1	-	U	Yes
Heptachlor	0.31	ug/l	1	-	Ų	Yes
Heptachlor epoxide	0.34	ug/l	1	-	U	Yes
Methoxychlor	0.32	ug/l	1	-	U	Yes
Toxaphene	ND		£			

Sample location: BMSMC Building 5 Area

Sampling date: 12-May-16 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U :	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	Ų	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	- C	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	•	U	Yes
Endosulfan-l	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	•	U	Yes
Heptachlor	0.010	ug/l	1	•	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.25	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12-May-16 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.012	ug/l	1	-	U	Yes
alpha-BHC	0.012	ug/l	1	-	U	Yes
beta-BHC	0.012	ug/l	1	-	U	Yes
delta-BHC	0.012	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.012	ug/l	1	-	U	Yes
alpha-Chìordane	0.012	ug/l	1	•	U	Yes
gamma-Chlordane	0.012	ug/l	1	-	U	Yes
Dieldrin	0.012	ug/l	1	-	U	Yes
4,4'-DDD	0.012	ug/l	1	-	U	Yes
4,4'-DDE	0.012	ug/l	1	-	U	Yes
4,4'-DDT	0.012	ug/l	1	-	U	Yes
Endrin	0.012	ug/l	1	-	U	Yes
Endosulfan sulfate	0.012	ug/l	1	-	U	Yes
Endrin aldehyde	0.012	ug/l	1	-	U	Yes
Endrin ketone	0.012	ug/l	1	-	U	Yes
Endosulfan-I	0.012	ug/l	1	-	U	Yes
Endosulfan-II	0.012	ug/l	1	-	U	Yes
Heptachlor	0.012	ug/l	1	-	U	Yes
Heptachlor epoxide	0.012	ug/l	1	-	U	Yes
Methoxychlor	0.024	ug/l	1	-	U	Yes
Toxaphene	0.29	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12-May-16 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.012	ug/l	1	-	U	Yes
alpha-BHC	0.012	ug/l	1	-	U	Yes
beta-BHC	0.012	ug/l	1	-	U	Yes
delta-BHC	¹² 0.012	ug/l	1,,	-	U	Yes
gamma-BHC (Lindane)	0.012	ug/l	1	-	U	Yes
alpha-Chlordane	0.012	ug/l	1	-	U	Yes
gamma-Chlordane	0.012	ug/l	1	-	U	Yes
Dieldrin	0.012	ug/l	1	-	U	Yes
4,4'-DDD	0.012	ug/l	1	-	U	Yes
4,4'-DDE	0.012	ug/l	1	-	U	Yes
4,4'-DDT	0.012	ug/l	1	-	U	Yes
Endrin	0.012	ug/l	1	-	U	Yes
Endosulfan sulfate	0.012	ug/l	1	646	Ų	Yes
Endrin aldehyde	0.012	ug/l	1	-	U	Yes
Endrin ketone	0.012	ug/l	1	-	U	Yes
Endosulfan-l	0.012	ug/l	1	-	U	Yes
Endosulfan-II	0.012	ug/l	1	-	U	Yes
Heptachlor	0.012	ug/l	1	-	U	Yes
Heptachlor epoxide	0.012	ug/l	1	-	U	Yes
Methoxychlor	0.024	ug/l	1	-	U	Yes
Toxaphene	0.29	ug/l	1	-	U	Yes

	Project/Case Number:JC20184
	Sampling Date:May_11-12,_2016
	Shipping Date:May_12,_2016
	EPA Region No.:2_
REVIEW OF PESTICIDE OF	RGANIC PACKAGE
The following guidelines for evaluating volation required validation actions. This document will a judgment to make more informed decision and users. The sample results were assessed accordocuments in the following order of precedence HW-36A, Revision 0, June, 2015. SOM02.2. Pestion data validation actions listed on the data reguidance document, unless otherwise noted.	assist the reviewer in using professiona in better serving the needs of the data ding to USEPA data validation guidance Hazardous Waste Support Section SOP Notice Data Validation. The QC criteria and
The hardcopied (laboratory name) _Accutest	
Lab. Project/SDG No.:JC20184 No. of Samples:8	Sample matrix:Groundwater
Trip blank No.:	
X Data CompletenessX Holding TimesN/A GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Overall Comments:TCL_pesticides_list_by_SW846	-8081B
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect	73
Reviewer: Capacita August Date: May 25, 2016	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
		With the second
_		
		2.0
10		

All criteria were met _	_X
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED	ACTION
Samples properly p	reservedt.		
	1		
,			

Preservatives:	_All_samples	_extracted	_and_	_analyzed_	_within_	the_requ	uired_criteria	

Criteria

Aqueous samples - seven (7) days from sample collection for extraction; 40 days from sample collection for analysis.

Non-aqueous samples – fourteen (14) days from sample collection for extraction; 40 days from sample collection for analysis.

Cooler temperature (Criteria: 4 + 2 °C): 3.8°C - OK

Actions

Qualify aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed within the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding times, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.

- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

Qualify non-aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed within the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding time, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.
- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

All criteria were metX	_
Criteria were not met see below	

GAS CHROMATOGRAPH WITH ELECTRON CAPTURE DETECTOR (GC/ECD) INSTRUMENT PERFORMANCE CHECK (SECTIONS 1 TO 5)

1. Resolution Check Mixture

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 60.0%?

Yes? or No?

Note:

If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

2. Performance Evaluation Mixture (PEM) Resolution Criteria

Criteria

Is PEM analysis performed at the required frequency (at the end of each pesticide initial calibration sequence and every 12 hours)?

Yes? or No?

Action

a. If PEM is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

Criteria

Is PEM % Resolution < 90%?

Yes? or No?

Action

- a. a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

	All criteria were met	х_
Criteria	were not met see below.	

3. PEM 4,4'-DDT Breakdown

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or **No**?

Action

a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)

Criteria

Is the PEM 4,4'-DDT % Breakdown > 20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

4. PEM Endrin Breakdown

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

All criteria were metX
Criteria were not met see below

5. Mid-point Individual Standard Mixture Resolution -

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 90.0%?

Yes? or No?

Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

Criteria

Is mid-point individual standard mixture analysis performed at the required frequency (every 12 hours)?

Yes? or No?

Action

a. If the mid-point individual standard mixture analysis is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

All criteria were met_	_X
Criteria were not met	
and/or see below	

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	05/16/16
Dates of initial calibration verification	ation:05/16/16
Dates of continuing calibration:_	05/16/16;_05/17/16
Dates of final calibration	05/16/16;_05/17/16
Instrument ID numbers:	GC1G
Matrix/Level:	_Aqueous/low

DATE	LAB	FILE	CRITERIA OUT	COMPOUND	SAMPLES AFFECTED		
	_ID#	_	RFs, %RSD, %D, r		0		
Initial	Initial and initial calibration verification within the guidance document performance criteria.						
Continuing calibration % differences meet the performance criteria. Final calibration verification							
performed, results included in data package.							

Criteria

Are a five point calibration curve delivered with concentration levels as shown in Table 3 of SOP HW-36A, Revision 0, June, 2015? Yes? or No?

Actions

If the standard concentrations listed in Table 3 are not used, use professional judgment to evaluate the effect on the data

Criteria

Are RT Windows calculated correctly?

Yes? or No?

Action

Recalculate the windows and use the corrected values for all evaluations.

Criteria

Are the Percent Relative Standard Deviation (%RSD) of the CFs for each of the single component target compounds less than or equal to 20.0%, except for alpha-BHC and delta-BHC?

Yes? or No?

Are the %RSD of the CFs for alpha-BHC and delta-BHC less than or equal to 25.0%. Yes? or No?

Is the %RSD of the CFs for each of the Toxaphene peaks must be < 30% when 5-point ICAL is performed?

Yes? or No?

Is the %RSD of the CFs for the two surrogates (tetrachloro-m-xylene and decachlorobiphenyl) less than or equal to 30.0%.

Yes? or No?

Action

- a. If the %RSD criteria are not met, qualify detects as estimated (J) and use professional judgment to qualify non-detected target compounds.
- b. If the %RSD criteria are within allowable limits, no qualification of the data is necessary

Continuing Calibration Checks

Criteria

Is the continuing calibration standard analyzed at the acceptable time intervals? Yes? or No?

Action

- a. If more than 14 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of either a PEM or mid-point concentration of the Individual Standard Mixtures (A and B) or (C), qualify all data as unusable (R).
- b. If more than 12 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of the last sample or blank that is part of the same analytical sequence, qualify all data as unusable (R).
- c. If more than 72 hours has elapsed from the injection of the sample with a Toxaphene detection and the Toxaphene Calibration Verification Standard (CS3), qualify all data as unusable (R).

Criteria

Is the Percent Difference (%D) within ±25.0% for the PEM sample?

Yes? or No?

Action

a. Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

Criteria

For the Calibration Verification Standard (CS3); is the Percent Difference (%D) within ±25.0%? Yes? or No?

Action

Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

All criteria were met _X	
Criteria were not met	
and/or see below	

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

- a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

- a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

A separate worksheet should be filled for each initial curve

All criteria were met _	X_	_
Criteria were not met		
and/or see below		

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contami	ination in the bla	anks below. Hig	h and low levels blanks	s must be treated separately.
CRQL concentr	ationN	/A		<u></u>
Laboratory blan	ks			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
	- 225		NAME AND ADDRESS OF THE PARTY.	nit_of_0.01_and_0.001_ug/L
Field/Equipmen				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
 _No_field/trip/ed	quipment_blank	s_analyzed_wi	th_this_data_package.	
		. J		C y, ,
			70 N	

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

The concentration of non-target compounds in all blanks must be less than or equal to 10 μ g/L. The concentration of each target compound found in the method or field blanks must be less than its CRQL listed in the method.

Data concerning the field blanks are not evaluated as part of the CCS process. If field blanks are present, the data reviewer should evaluate this data in a similar fashion as the method blanks.

Specific actions are as follows:

Blank Actions for Pesticide Analyses

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
	< CRQL	< CRQL	Report CRQL value with a U
		≥CRQL	No qualification required
Method, Sulfur		< CRQL	Report CRQL value with a U
Cleanup, Instrument, Field, TCLP/SPLP	> CRQL	≥ CRQL and ≤ blank concentration	Report blank value for sample concentration with a U
		≥ CRQL and > blank concentration	No qualification required
	= CRQL Gross contamination	≤CRQL	Report CRQL value with a U
		> CRQL	No qualification required
		Detects	Report blank value for sample concentration with a U

All criteria were met _X
Criteria were not met
and/or see below

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
	<u> </u>				
		91			
					35
					28

All criteria were met __X__ Criteria were not met and/or see below ____

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix:_Aqueou	s <u>.</u>				
Lab Sample ID	Lab File ID	S1 a	S1 b	S2 a	S2 b
JC20184-1 JC20184-2 JC20184-3 JC20184-4 JC20184-5 JC20184-6 OP93907-BS1 OP93907-MS1 OP93907-MS OP93907-MSD Surrogate Compounds S1 = Tetrachlore		91 127 109 87 99 97 122 118 96 94 Recov Limits 26-132	·	48 88 81 76 67 74 113 98 74 79	53 91 76 82 76 78 112 99 74 77
S2 = Decachloro (a) Recovery from	• •	10-118	3%		

Note: Surrogate recoveries within laboratory control limits.

Actions:

(b) Recovery from GC signal #2

- a. For any surrogate recovery greater than 150%, qualify detected target compounds as biased high (J+).
- b. Do not qualify non-detected target compounds for surrogate recovery > 150 %.
- c. If both surrogate recoveries are greater than or equal to 30% and less than or equal to 150%, no qualification of the data is necessary.
- d. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify detected target compounds as biased low (J-).
- e. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify non-detected target compounds as approximated (UJ).

- f. If low surrogate recoveries are from sample dilution, professional judgment should be used to determine if the resulting data should be qualified. If sample dilution is not a factor:
 - i. Qualify detected target compounds as biased low (J-).
 - ii. Qualify non-detected target compounds as unusable (R).
- g. If surrogate RTs in PEMs, Individual Standard Mixtures, samples, and blanks are outside of the RT Windows, the reviewer must use professional judgment to qualify data.
- h. If surrogate RTs are within RT windows, no qualification of the data is necessary.
- i. If the two surrogates were not added to all samples, MS/MSDs, standards, LCSs, and blanks, use professional judgment in qualifying data as missing surrogate analyte may not directly apply to target analytes.

Summary Surrogate Actions for Pesticide Analyses

	Action*		
Criteria	Detected Target	Non-detected Target	
	Compounds	Compounds	
%R > 150%	J+	No qualification	
30% < %R < 150%	No qualification		
10% < %R < 30%	J- UJ		
%R < 10% (sample dilution not a factor)	J-	R	
%R < 10% (sample dilution is a factor)	Use professional judgment		
RT out of RT window	Use professional judgment		
RT within RT window	No qualification		

* Use professional judgment in qualifying data, as surrogate recovery problems may not directly apply to target analytes.

Action

All criteria were metX
Criteria were not met
and/or see below

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory Program Project Officer (CLP PO) if a field blank was used for the MS and MSD, unless designated as such by the Region.

NOTE: For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _	X_
Criteria were not met	
and/or see below	

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

LCS Spike Compound	Recovery Limits (%)
gamma-BHC	50 – 120
Heptachlor epoxide	50 – 150
Dieldrin	30 – 130
4,4'-DDE	50 – 150
Endrin	50 – 120
Endosulfan sulfate	50 – 120
trans-Chlordane	30 – 130
Tetrachloro-m-xylene (surrogate)	30 – 150
Decachlorobiphenyl (surrogate)	30 – 150

LC	S concentrations	:0.25_ug/L		
List the %F	R of compounds w	hich do not meet the criteria	1	
	LCS ID	COMPOUND	% R	QC LIMIT
	· · · · · · · · · · · · · · · · · · ·			
				

Action

The following guidance is suggested for qualifying sample data for which the associated LCS does not meet the required criteria.

- a. If the LCS recovery exceeds the upper acceptance limit, qualify detected target compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the LCS recovery is less than the lower acceptance limit, qualify detected target compounds as estimated (J) and non-detects as unusable (R).
- c. Use professional judgment to qualify data for compounds other than those compounds that are included in the LCS.
- d. Use professional judgment to qualify non-LCS compounds. Take into account the compound class, compound recovery efficiency, analytical problems associated with each compound, and comparability in the performance of the LCS compound to the non-LCS compound.
- e. If the LCS recovery is within allowable limits, no qualification of the data is necessary.

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

Note: Blank spike/blank spike duplicate analyzed for aqueous matrices. % recoveries and RPD within laboratory control limits.

All criteria were met
Criteria were not met
and/or see belowN/A

FLORISIL CARTRIDGE PERFORMANCE CHECK

NOTE: Florisil cartridge cleanup is mandatory for all extracts.

Criteria

Is the Florisil cartridge performance check conducted at least once on each lot of cartridges used for sample cleanup or every 6 months, whichever is most frequent?

Yes? or No?

N/A

Criteria

Are the results for the Florisil Cartridge Performance Check solution included with the data package?

Yes? or No?

N/A

Note: If % criteria are not met, examine the raw data for the presence of polar interferences and use professional judgment in qualifying the data as follows:

Action:

- a. If the Percent Recovery is greater than 120% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- c. If the Percent Recovery is greater than or equal to 10% and less than 80% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is less than 10% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J) and qualify non-detected target compounds as unusable (R).
- e. If the Percent Recovery of 2,4,5-trichlorophenol in the Florisil Cartridge Performance Check is greater than or equal to 5%, use professional judgment to qualify detected and non-detected target compounds, considering interference on the sample chromatogram.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the Florisil Cartridge Performance Check analysis not yielding acceptable results.

Note: No information for florisil cartridge performance check included in data package. Florisil cartridge not used for sample extraction/clean-up. No qualification of the data performed, professional judgment.

All criteria were metN/A	
Criteria were not met	
and/or see below	

GEL PERMEATION CHROMATOGRAPHY (GPC) PERFORMANCE CHECK

NOTE: GPC cleanup is mandatory for all soil samples.

If GPC criteria are not met, examine the raw data for the presence of high molecular weight contaminants; examine subsequent sample data for unusual peaks; and use professional judgment in qualifying the data. Notify the Contract Laboratory Program Project Officer (CLP PO) if the laboratory chooses to analyze samples under unacceptable GPC criteria.

Action:

- a. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, the non-detected target compounds may be suspect, qualify detected compounds as estimated (J).
- b. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, qualify all non-detected target compounds as unusable (R).
- c. If the Percent Recovery is greater than or equal to 10% and is less than 80% for any of the pesticide target compounds in the GPC calibration, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- e. If high recoveries (i.e., greater than 120%) were obtained for the pesticides and surrogates during the GPC calibration check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the GPC cleanup analyses not yielding acceptable results.

Note: No information for performance of GPC cleanup included in data package. No qualification of the data performed, professional judgment.

All criteria were metX
Criteria were not met
and/or see below

TARGET COMPOUND IDENTIFICATION

Criteria:

- 1. Is Retention Times (RTs) of both of the surrogates and reported target compounds in each sample within the calculated RT Windows on both columns? Yes? or No?
- 2. Is the Tetrachloro-m-xylene (TCX) RT ± 0.05 minutes of the Mean RT (RT) determined from the initial calibration and Decachlorobiphenyl (DCB) within ± 0.10 minutes of the RT determined from the initial calibration? Yes? or No?
- 3. Is the Percent Difference (%D) for the detected mean concentrations of a pesticide target compound between the two Gas Chromatograph (GC) columns within the inclusive range of \pm 25.0 %?

 Yes? or No?
- 4. When no analytes are identified in a sample; are the chromatograms from the analyses of the sample extract and the low-point standard of the initial calibration associated with those analyses on the same scaling factor?

 Yes? or No?
- 5. Does the chromatograms display the Single Component Pesticides (SCPs) detected in the sample and the largest peak of any multi-component analyte detected in the sample at less than full scale.

 Yes? or No?
- 6. If an extract is diluted; does the chromatogram display SCPs peaks between 10-100% of full scale, and multi-component analytes between 25-100% of full scale? Yes? or No? N/A
- 7. For any sample; does the baseline of the chromatogram return to below 50% of full scale before the elution time of alpha-BHC, and also return to below 25% of full scale after the elution time of alpha-BHC and before the elution time of DCB?

 Yes? or No?
- 8. If a chromatogram is replotted electronically to meet these requirements; is the scaling factor used displayed on the chromatogram, and both the initial chromatogram and the replotted chromatogram submitted in the data package.

 Yes? or No?

Action:

- a. If the qualitative criteria for both columns were not met, all target compounds that are reported as detected should be considered non-detected.
- b. Use professional judgment to assign an appropriate quantitation limit using the following guidance:
 - If the detected target compound peak was sufficiently outside the pesticide RT Window, the reported values may be a false positive and should be replaced with the sample Contract Required Quantitation Limits (CRQL) value.

- ii. If the detected target compound peak poses an interference with potential detection of another target peak, the reported value should be considered and qualified as unusable (R).
- c. If the data reviewer identifies a peak in both GC column analyses that falls within the appropriate RT Windows, but was reported as a non-detect, the compound may be a false negative. Use professional judgment to decide if the compound should be included.

Note: State in the Data Review Narrative all conclusions made regarding target compound identification.

- d. If the Toxaphene peak RT windows determined from the calibration overlap with SCPs or chromatographic interferences, use professional judgment to qualify the data.
- e. If target compounds were detected on both GC columns, and the Percent Difference between the two results is greater than 25.0%, consider the potential for coelution and use professional judgment to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interfering compound is indicated, use professional judgment to determine how best to report, and if necessary, qualify the data according to these guidelines.
- f. If Toxaphene exhibits a marginal pattern-matching quality, use professional judgment to establish whether the differences are due to environmental "weathering" (i.e., degradation of the earlier eluting peaks relative to the later eluting peaks). If the presence of Toxaphene is strongly suggested, report results as presumptively present (N).

GAS CHROMATOGRAPH/MASS SPECTROMETER (GC/MS) CONFIRMATION

NOTE: This confirmation is not usually provided by the laboratory. In cases where it is provided, use professional judgment to determine if data qualified with "C" can be salvaged if it was previously qualified as unusable (R).

Action:

- a. If the quantitative criteria for both columns were met (≥ 5.0 ng/ μ L for SCPs and ≥ 125 ng/ μ L for Toxaphene), determine whether GC/MS confirmation was performed. If it-was performed, qualify the data using the following quidance:
 - i. If GC/MS confirmation was not required because the quantitative criteria for both columns was not met, but it was still performed, use professional judgment when evaluating the data to decide whether the detect should be qualified with "C".
 - ii. If GC/MS confirmation was performed, but unsuccessful for a target compound detected by GC/ECD analysis, qualify those detects as "X".

All criteria were met _	_X
Criteria were not met	
and/or see below	

COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC20184-3MS

4.4'-DDE

RF = 1.136

[] =

(76248229)(50)/(120.6 X 10⁶)(1.136)

27.8 ppb

Ok

Action:

- a. If sample quantitation is different from the reported value, qualify result as unusable (R).
- b. When a sample is analyzed at more than one dilution, the lowest CRQLs are used unless a QC exceedance dictates the use of the higher CRQLs from the diluted sample.
- c. Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" and its corresponding value on the original reporting form and substituting the data from the diluted sample.
- d. Results between the MDL and CRQL should be qualified as estimated (J).
- e. Results less than the MDL should be reported at the CRQL and qualified (U). MDLs themselves are not reported.
- f. For non-aqueous samples, if the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table).

Percent Moisture Actions for Pesticide Analysis for Non-Aqueous Samples

Criteria	Action					
	Detected Associated Compounds	Non-detected Associated Compounds				
% Moisture < 70.0	No qualification					
70.0 < % Moisture < 90.0	J	UJ				
% Moisture > 90.0	J R					

List sam	nples which have <	50 % solids		
		<u></u>	 	

Note: If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.

Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
		<u> </u>
		177

All criteria were metN/A	
Criteria were not met	
and/or see below	

FIELD DUPLICATE PRECISION

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. If large RPDs (> 50%) is observed, confirm identification of samples and note difference in the executive summary.

Sample IDs:			Matrix:			
COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
No Sold/Joharaton	dunlinata	analyzad with this	data naskaga MC	MCD or LC	C/I CSD 9/ recoveries	
RPD u	sed to a	ssess precision. R	PD within the require	ed criteria o	S/LCSD % recoveries f < 50 %.	

Actions:

- a. Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.
- b. If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:
 - i. If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).
 - ii. If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.
 - iii. If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.
 - iv. If both sample and duplicate results are not detected, no action is needed.

OVERALL ASSESSMENT OF DATA

Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data.

Note: The Contract Laboratory Program Project Officer (CLP PO) must be informed if any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

Overall assessment of the data:

Results are valid; the data can be used for

decision making purposes.

EXECUTIVE NARRATIVE

SDG No:

JC20184

Laboratory:

Accutest, Florida

Analysis:

SW846-8015C

Number of Samples:

Q

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Eight (8) groundwater samples were analyzed for the low molecular weight alcohols (LMWAs) list following method SW846-8015C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update III, December 1996)," specifically for Methods 8000/8015C are utilized. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

- 1. Initial, continuing, and final calibration verifications meets method specific criteria
- in at least one of the column, second column used for confirmation only.
- 2. Blank spike recovery outside laboratory control limits for isobutyl alcohol, n-propyl alcohol and n-butyl alcohol. No action taken, blank spike recovery within generally acceptable control limits; no associated positive found in QC batch.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chamid Licence 1999

Signature:

May 24 2016

Date:

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC20184-1

Sample location: BMSMC Building 5 Area

Sampling date: 5/11/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	 Result	Uni	ts Dil	ution Facto	or	Lab Flag	Validation	Reportable
Ethanol	5.0	mg	/I	1.0		- ,,,	U	Yes
Isobutyl Alcohol	5.0	mg	/I	1.0		-	U	Yes
Isopropyl Alcohol	5.0	mg	/1	1.0		-	U	Yes
n-Propyl Alcohol	5.0	mg	/1	1.0		-	U	Yes
n-Butyl Alcohol	5.0	mg	/ I	1.0		-	U	Yes
sec-Butyl Alcohol	5.0	mg	/I	1.0		-	U	Yes
Methanol	5.0	mg	/I	1.0		-	U	Yes

Sample ID: JC20184-2

Sample location: BMSMC Building 5 Area

Sampling date: 5/11/2016

Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	5.0	mg/l	1.0		U	Yes
Isobutyl Alcohol	5.0	mg/l	1.0	-	Ü	Yes
Isopropyl Alcohol	5.0	mg/l	1.0	-	U	Yes
n-Propyl Alcohol	5.0	mg/l	1.0	•	U	Yes
n-Butyl Alcohol	5.0	mg/l	1.0	-	U	Yes
sec-Butyl Alcohol	5.0	mg/l	1.0		U	Yes
Methanol	5.0	mg/l	1.0	•	U	Yes

Sample ID: JC20184-3

Sample location: BMSMC Building 5 Area

Sampling date: 5/12/2016 Matrix: Groundwater

METHOD: 8015C

1416111001 00100							
	Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
	Ethanol	5.0	mg/l	1.0	-	U	Yes
	Isobutyl Alcohol	5.0	mg/l	1.0	-	υ	Yes
	Isopropyl Alcohol	5.0	mg/l	1.0	-	U	Yes
	n-Propyl Alcohol	5.0	mg/l	1.0	-	U	Yes
	n-Butyl Alcohol	5.0	mg/l	1.0	-	U	Yes
	sec-Butyl Alcohol	5.0	mg/l	1.0	•	U	Yes
	Methanol	5.0	mg/l	1.0	-	U	Yes

Sample ID: JC20184-3MS

Sample location: BMSMC Building 5 Area

Sampling date: 5/12/2016

Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	5920	mg/l	1.0	•	U	Yes
Isobutyl Alcohol	5820	mg/l	1.0	-	U	Yes
Isopropyl Alcohol	5190	mg/l	1.0	-	ប	Yes
n-Propyl Alcohol	6040	mg/l	1.0	-	U	Yes
n-Butyl Alcohol	6130	mg/l	1.0	-	U	Yes
sec-Butyl Alcohol	5550	mg/l	1.0	•	U	Yes
Methanol	4440	mg/l	1.0	-	U	Yes

Sample ID: JC20184-3MSD

Sample location: BMSMC Building 5 Area

Sampling date: 5/12/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	5690	mg/l	1.0	•	U	Yes
Isobutyl Alcohol	6130	mg/l	1.0	-	U	Yes
Isopropyl Alcohol	5320	mg/l	1.0	-	U	Yes
n-Propyl Alcohol	6170	mg/l	1.0	•	U	Yes
n-Butyl Alcohol	6200	mg/l	1.0	•	U	Yes
sec-Butyl Alcohol	5610	mg/l	1.0	-	U	Yes
Methanol	5080	mg/l	1.0	4 -	U	Yes

Sample ID: JC20184-4

Sample location: BMSMC Building 5 Area

Sampling date: 5/12/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	5.0	mg/l	1.0	-	U	Yes
Isobutyl Alcohol	5.0	mg/l	1.0	-	U	Yes
Isopropyl Alcohol	5.0	mg/l	1.0	-	U	Yes
n-Propyl Alcohol	5.0	mg/l	1.0	-	U	Yes
n-Butyl Alcohol	5.0	mg/l	1.0	-	U	Yes
sec-Butyl Alcohol	5.0	mg/l	1.0	•	U	Yes
Methanol	5.0	mg/l	1.0	•	U	Yes

Sample ID: JC20184-5

Sample location: BMSMC Building 5 Area

Sampling date: 5/12/2016

Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	5.0	mg/l	1.0	-	U	Yes
Isobutyl Alcohol	5.0	mg/l	1.0	-	U	Yes
Isopropyl Alcohol	5.0	mg/l	1.0	-	U	Yes
n-Propyl Alcohol	5.0	mg/l	1.0	•	U	Yes
n-Butyl Alcohol	5.0	mg/l	1.0	-	U	Yes
sec-Butyl Alcohol	5.0	mg/l	1.0	•	U	Yes
Methanol	5.0	mg/l	1.0	-	U	Yes

Sample ID: JC20184-6

Sample location: BMSMC Building 5 Area

Sampling date: 5/12/2016

Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	5.0	mg/l	1.0	•	U	Yes
Isobutyl Alcohol	5.0	mg/l	1.0	-	U	Yes
Isopropyl Alcohol	5.0	mg/l	1.0	-	U	Yes
n-Propyl Alcohol	5.0	mg/l	1.0	-	U	Yes
n-Butyl Alcohol	5.0	mg/l	1.0	-	U	Yes
sec-Butyl Alcohol	5.0	mg/l	1.0	•	U	Yes
Methanol	5.0	mg/l	1.0	•	U	Yes

	Project Number:JC20184
	Date:05/11-12/2016
	Shipping Date: 05/12/2016
	EPA Region: 2
	N
REVIEW OF VOLATILE O	PGANIC PACKAGE
he following guidelines for evaluating volatile organics wer	
locument will assist the reviewer in using professional jud	
erving the needs of the data users. The sample results	
uidance documents in the following order of precede	
hysical/Chemical Methods SW-846 (Final Update III, Dece	mber 1996)," specifically for Methods 8000/8015C are
tilized. The QC criteria and data validation actions listed	on the data review worksheets are from the primary
uidance document, unless otherwise noted.	
he hardcopied (laboratory name) _Accutest	data package received has been reviewed
ind the quality control and performance data summarized. T	he modified data review for VOCs included:
.ab. Project/SDG No.:JC20184	_ Sample matrix:Groundwater
No. of Samples:88	_
Trip blank No.:	
ield blank No.:	
quipment blank No.:	
ield duplicate No.:	
•	
X Data Completeness	X Laboratory Control Spikes
X Holding Times	X Field Duplicates
N/A_ GC/MS Tuning	X Calibrations
N/A Internal Standard Performance	X Compound Identifications
X Blanks	X Compound Quantitation
X Surrogate Recoveries	X Quantitation Limits
X Gurrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	
Overall Comments:_Low_molecular_weight_alc	shala by CM 946 9015C
Offitteritscow_fitolectilal_weight_alc	011015_0y_5vv-040_0015C
Definition of Qualifiers:	
J- Estimated results	
J- Compound not detected	
R- Rejected data	
JJ- Estimated nonderect	
(land) but	
Reviewer: A gul Mull	
Date:May_24,_2016	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
		_
		_

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION	
All samples analy preserved.	yzed within the red	commended method	holding ti	me. All samples	properly
	1	-			

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles. Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection. Cooler temperature (Criteria: 4 + 2 °C): 3.8°C

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

	All criteria were metN/A	
Criteria	were not met see below	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits
N/A_ The BFB performance results were reviewed and found to be within the specified criteria.
N/A_ BFB tuning was performed for every 12 hours of sample analysis.
If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.
List the samples affected:
If mass calibration is in error, all associated data are rejected.

All criteria were met _X_	_
Criteria were not met	
and/or see below	

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

		Dates of continuing Dates of final calib Instrument ID num	g calibration:_05/02/1 ration verification:_0! ber:	05/02/16 6 (initial);_05/05/16;_05/06/16 5/02/16;_05/05/16;_05/06/16 VOA5 /low	
DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED	
			-		

Note: Initial, continuing, and final calibration verifications meets method specific criteria in at least one of the column, second column used for confirmation only.

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be < 15 % regardless of method requirements for CCC.

All %Ds must be ≤ 20% regardless of method requirements for CCC.

It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of > 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met _X
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method	EE 9637 70			
Field/Equipment			76	
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
No_field/trip/e	quipment_blan	ks_included_in	_this_data_package	
	ura gasa			-

All criteria were met _X
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene) ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
		_			
			-		
	`				

All criteria were metX
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment. List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID		SURROGATE COMPOUND			ACTION	
Н	exanol	DBFM	TOL-d8	BFB		
_All_surrogate_recov	eries_within_	laboratory_con	itrol_limits			
			W	-		
		0				
QC Limits* (Aqueous)		23 to	to	to		
QC Limits* (Solid-Lov	v)					13
LL_to_UL QC Limits* (Solid-Me		21to	to	to		
LL_to_UL		to	to	to		
1,2-DCA = 1,2-Dichlo DBFM = Dibromofluo		4	TOL-d8 BFB =	3 = Toluene-d8 Bromofluorobe		
		•	nance criteria, Ll f 80 – 120 % for	-	UL = upper limit. 70 – 130 % for	solid
samples.						
Actions:						
QUALITY		%R < 10%	%R = 1	10% - LL 9	6R > UL	
Positive resu	ilte	1	1			

Surrogate action should be applied:

Nondetects results

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery.

UJ

Accept

All criteria were met _X
Criteria were not met
and/or see below

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC20184-3MS/-MSD				Matrix/Level:Groundwater/ow		
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
MS/MSD%_re	ecoveries_and_RPD_	within_lab	oratory_	control_limits		- 41
				ENGLE SCHOOL		

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All criteria were metX
Criteria were not met
and/or see below

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

Note: No action taken, MS/MSD applies only the unspiked sample. Unspiked sample from another data package, used for QC purposes only

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Le	vel/Unit:	
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
					W 0 0 0
					5, 38

Actions:

A separate worksheet should be used for each MS/MSD pair.

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were met _	_X
Criteria were not met	
and/or see below	

QC LIMIT

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

LCS Recoveries Criteria

LCS ID

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? **Yes** or No. If no make note in data review memo.

% R

List the %R of compounds which do not meet the criteria

COMPOUND

Note: No action taken, blank spike recovery within generally acceptable control limits; no associated positive found in QC batch.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metN/A Criteria were not met and/or see below
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD + 30% for aqueous samples, RPD + 50 % for solid samples. If both samples and

duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
		-			recoveries RPD used to
asses	s precis	ion. RPD within labo	oratory and generally ac	ceptable	e control limits.

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were metN/A	
Criteria were not met	
and/or see below	

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +100% or -50% of the IS area in the associated calibration standard.
- * Retention time (RT) within 30 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	18 001	IS AREA	RANGE	
					_
	•				
300					

Actions:

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -25%	IS AREA = -25 % TO - 50%	IS AREA > + 100%
Positive results	j	J	J
Nondetected results	R	UJ	ACCEPT

2. If a !S retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met _	_X
Criteria were not met	
and/or see below	

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC20184-3MS

n-butyl alcohol

RF = 24.49

[] = (150090)/(24.49)

= 6129 ppm OK

All criteria were met _X_	
Criteria were not met	
and/or see below	

XII.	\cap	IAN	TITI	'ΔT	IUV	н	IA.	AIT	2
AII.	wu	<i> </i>	4111	Δ	IVIN	L	.IIV	/	•

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
		193

Percent Solids
List samples which have ≤ 50 % solids

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R) $\,$